Pregunta
upstudy study bank question image url

fhe man and the projection of the airship to the nearest metre. From the base of a house whose height is 20 m ., it was found that the angle of elevatio of the top of a tower was of measure \( 25^{\circ} \) Then it was found for a next time that the angl of elevation of the top of the same tower from the top of the house was of measure \( 18^{\circ} \) Find the height of the tower. b) From the top of a mountain of height 100 m ., it was found that the measure of the depression angle of the top of a rock was \( 42^{\circ} \). 37 Find the height of the rock if the distance between it and the mountain was 22 m . , knowing that they are on the same

Ask by Johnson Lyons. in Egypt
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The height of the tower is approximately 66 meters, and the height of the rock is approximately 80 meters.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Beyond the Answer

To find the height of the tower, we can use some trigonometry! First, define \( h \) as the height of the tower. When standing at the base of the house (20 m), the line of sight to the tower top creates a right triangle with an angle of elevation of \( 25^{\circ} \). Using the tangent function: \[ \tan(25^\circ) = \frac{h - 20}{d} \rightarrow d = \frac{h - 20}{\tan(25^\circ)} \] The next triangle, standing from the top of the house (at 20 m), forms an angle of elevation of \( 18^{\circ} \): \[ \tan(18^\circ) = \frac{h}{d} \rightarrow d = \frac{h}{\tan(18^\circ)} \] Set the two expressions for \( d \) equal to each other to solve for \( h \). Next, for the rock's height, we’ll use the depression angle from the mountain top. The angle of depression \( \theta = 42^\circ \) means it forms a right triangle down to the rock. If the mountain is 100 m tall, the height of the rock \( r \) can be found using: \[ \tan(42^\circ) = \frac{100 - r}{22} \] Rearranging gives: \[ 100 - r = 22 \tan(42^\circ) \rightarrow r = 100 - 22 \tan(42^\circ) \] Plug in \( \tan(42^\circ) \) to find the rock’s height. Math is fun!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad