Pregunta
upstudy study bank question image url

The matrix A given below corresponds to a system of linear equations. After Gauss-Jordan elimination is applied to A, the matrix B is obtained Write the systern of linear equations corresponding to A, and use B to give all solutions of the system of linear equations. \[ A=\left[\begin{array}{rrrr} 9 & 29 & 5 & 20 \\ 4 & 13 & 5 & -9 \\ 1 & 3 & -5 & 3 \end{array}\right], \quad B=\left[\begin{array}{rrrr} 1 & 0 & -80 & 0 \\ 0 & 1 & 25 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right] \] Write the system of linear equations corresponding to the matrix A . \[ \begin{array}{l} 9 x_{1}+(29) x_{2}+(5) x_{3}=20 \\ 4 x_{1}+(13) x_{2}+(5) x_{3}=-9 \\ 1 x_{1}+(3) x_{2}+(-5) x_{3}=3 \end{array} \] Select the correct choice below and fill in any answer boxes within your choice, A. There is one solution. The solution is \( x_{1}=\square, x_{2}=\square \), and \( x_{3}=\square \). \( \square \) \( \square \) \( \square \) (Simplify your answer.) B. There are infinitely many solutions. If \( x_{3} \) is any real number, \( x_{1}=\square \) and \( x_{2}=\square \). \( \square \) (Type an expression using \( x_{3} \) as the variable.) C. There is no solution.

Ask by Campbell Pope. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There is no solution.

Solución

To determine the solutions of the given system of linear equations, let's analyze the matrices \( A \) and \( B \). **Matrix \( A \)** represents the augmented matrix of the system: \[ \begin{array}{l} 9 x_{1} + 29 x_{2} + 5 x_{3} = 20 \\ 4 x_{1} + 13 x_{2} + 5 x_{3} = -9 \\ 1 x_{1} + 3 x_{2} - 5 x_{3} = 3 \end{array} \] **Matrix \( B \)** is the result after applying Gauss-Jordan elimination to \( A \): \[ B = \begin{bmatrix} 1 & 0 & -80 & 0 \\ 0 & 1 & 25 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \] Interpreting matrix \( B \) as an augmented matrix, we obtain the following system of equations: \[ \begin{array}{l} 1 x_{1} + 0 x_{2} - 80 x_{3} = 0 \\ 0 x_{1} + 1 x_{2} + 25 x_{3} = 0 \\ 0 x_{1} + 0 x_{2} + 0 x_{3} = 1 \end{array} \] The third equation simplifies to: \[ 0 = 1 \] This is a contradiction, indicating that the system of equations is **inconsistent**. **Answer:** **C. There is no solution.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The system of linear equations corresponding to matrix A is given by: \[ \begin{align*} 9 x_{1} + 29 x_{2} + 5 x_{3} &= 20, \\ 4 x_{1} + 13 x_{2} + 5 x_{3} &= -9, \\ 1 x_{1} + 3 x_{2} - 5 x_{3} &= 3. \end{align*} \] Looking at matrix B after Gauss-Jordan elimination, we see that the last row indicates a free variable situation, namely \(x_3\). To express the solutions, we find from matrix B: \[ x_{1} = 80x_{3}, \quad x_{2} = -25x_{3}. \] Thus, the solution is: B. There are infinitely many solutions. If \( x_{3} \) is any real number, \( x_{1} = 80x_{3} \) and \( x_{2} = -25x_{3} \). --- Throughout history, the method of solving systems of linear equations has evolved from geometric interpretations to algebraic methods. Ancient Greeks used geometric approaches, while matrices emerged in the 19th century as mathematicians like Cayley and Sylvester formalized the concept. In real-world applications, systems of linear equations model countless scenarios from economics to engineering. For instance, in resource allocation, companies can use these systems to optimize production levels based on constraints like budget and material availability. This helps in making smart business decisions based on data-driven insights!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad