Pregunta
upstudy study bank question image url

\begin{tabular}{l} If a 737 takes off at an \( 8^{\circ} \) angle going 160 mph , \\ what is the horizontal component of the speed of \\ the plane? (Note: \( \sin \left(8^{\circ}\right) \approx 0.14, \cos \left(8^{\circ}\right) \approx 0.99 \), \\ \( \left.\tan \left(8^{\circ}\right) \approx 0.14\right) \) \\ \hline\end{tabular}

Ask by Hills Maxwell. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The horizontal component of the plane's speed is approximately 158.4 mph.

Solución

To find the horizontal component of the speed of the plane, we can use the trigonometric function of the angle of takeoff. Given: - Angle of takeoff: \( 8^{\circ} \) - Speed of the plane: 160 mph We know that the horizontal component of the speed can be calculated using the cosine of the angle of takeoff. The formula to find the horizontal component of the speed is: \[ \text{Horizontal component} = \text{Speed} \times \cos(\text{Angle of takeoff}) \] Substitute the given values into the formula: \[ \text{Horizontal component} = 160 \times \cos(8^{\circ}) \] Using the given approximation of \( \cos(8^{\circ}) \approx 0.99 \), we can calculate the horizontal component of the speed. Calculate the value by following steps: - step0: Calculate: \(160\times 0.99\) - step1: Multiply the numbers: \(158.4\) The horizontal component of the speed of the plane is approximately 158.4 mph.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the horizontal component of the speed of the plane, we can use the cosine function. The horizontal speed (Vx) can be calculated using the formula: \[ Vx = V \cdot \cos(\theta) \] where \( V = 160 \) mph and \( \theta = 8^{\circ} \). Substituting the values in, we have: \[ Vx = 160 \cdot \cos(8^{\circ}) \approx 160 \cdot 0.99 \approx 158.4 \text{ mph} \] So, the horizontal component of the speed of the 737 is approximately 158.4 mph. Now let's consider real-world applications of these calculations. Pilots use trigonometric functions like sine and cosine frequently to determine flight paths, ensuring that they can take off and land safely with calculated angles and speeds. This knowledge is crucial not just for flying but also for landing maneuvers where maintaining an accurate horizontal speed relative to the runway is essential. Another engaging aspect of flight dynamics is the importance of avoiding common mistakes. A frequent error in such calculations is using the wrong trigonometric function or misinterpreting the angle's relation to horizontal and vertical components. Remember, sine relates to the vertical component (height), while cosine deals with the horizontal component, so keep that in mind to avoid a bumpy math ride!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad