Pregunta
upstudy study bank question image url

6. [-/1 Points] DETAILS MY NOTES SCALCET9 2.7.029. If \( f(x)=8 x^{2}-x^{3} \), find \( f^{\prime}(2) \) and use it to find an equation of the tangent line to the curve \( y=8 x^{2}-x^{3} \) at the point ( 2,24 ). Need Help? Read It Watch it SUBMIT MNSWER

Ask by Christensen Wyatt. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( f^{\prime}(2) = 20 \) and the equation of the tangent line at \( (2, 24) \) is \( y = 20x - 16 \).

Solución

Sure, let's work through the problem step by step. **Given:** \[ f(x) = 8x^{2} - x^{3} \] We need to: 1. Find \( f^{\prime}(2) \). 2. Use it to find the equation of the tangent line to the curve at the point \( (2, 24) \). --- ### 1. Finding \( f^{\prime}(x) \) and \( f^{\prime}(2) \) **Step 1:** Differentiate \( f(x) \) with respect to \( x \): \[ f(x) = 8x^{2} - x^{3} \] \[ f^{\prime}(x) = \frac{d}{dx}(8x^{2}) - \frac{d}{dx}(x^{3}) \] \[ f^{\prime}(x) = 16x - 3x^{2} \] **Step 2:** Evaluate the derivative at \( x = 2 \): \[ f^{\prime}(2) = 16(2) - 3(2)^{2} \] \[ f^{\prime}(2) = 32 - 12 \] \[ f^{\prime}(2) = 20 \] --- ### 2. Equation of the Tangent Line at \( (2, 24) \) The equation of the tangent line can be written in point-slope form: \[ y - y_{1} = m(x - x_{1}) \] where: - \( m = f^{\prime}(2) = 20 \) - \( (x_{1}, y_{1}) = (2, 24) \) **Plugging in the values:** \[ y - 24 = 20(x - 2) \] **Simplify the equation:** \[ y - 24 = 20x - 40 \] \[ y = 20x - 40 + 24 \] \[ y = 20x - 16 \] --- **Final Answers:** - \( f^{\prime}(2) = 20 \) - Equation of the tangent line: \( y = 20x - 16 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find \( f^{\prime}(2) \), we first need to calculate the derivative of the given function \( f(x) = 8x^{2} - x^{3} \). The derivative is \( f'(x) = 16x - 3x^{2} \). Now, substituting \( x = 2 \): \[ f'(2) = 16(2) - 3(2)^{2} = 32 - 12 = 20. \] Now that we have the slope of the tangent line at the point (2, 24), we can use the point-slope form of a line to find the tangent line's equation: \[ y - 24 = 20(x - 2). \] Simplifying this gives us \( y = 20x - 16 \). For a bit of historical context, calculus was developed independently by Sir Isaac Newton and Gottfried Wilhelm Leibniz in the late 17th century. Their work laid the foundation for understanding how change and motion are modeled mathematically, which is fundamental for finding slopes of curves, just like we did with \( f^{\prime}(2) \) here! In terms of real-world application, the concept of tangent lines is crucial in fields such as physics and engineering where it's important to understand the instantaneous rate of change—like how fast a car is going at a precise moment or the slope of a ramp. This helps in assessing everything from vehicle safety to the design of roller coasters!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad