Pregunta
upstudy study bank question image url

Inswer above is NOT correct. the volume of the solid obtained by rotating the region bounded by the given curves about the specified axis. \[ y=1 / x^{3}, \quad y=0, \quad x=4, \quad x=8 \text {; } \] ut the \( y \)-axis. ume \( =\frac{3 \pi^{2}}{32} \) view My Answers score was recorded. score was successfully sent to the LMS. nave attempted this problem 3 times.

Ask by Ryan Frazier. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume of the solid is \( \frac{\pi}{4} \).

Solución

To find the volume of the solid obtained by rotating the region bounded by the curves \( y = \frac{1}{x^3} \), \( y = 0 \), \( x = 4 \), and \( x = 8 \) about the \( y \)-axis, we can use the method of cylindrical shells. ### Step 1: Identify the volume formula The volume \( V \) of the solid of revolution using the shell method is given by the formula: \[ V = 2\pi \int_{a}^{b} x \cdot f(x) \, dx \] where \( f(x) \) is the function being rotated, and \( [a, b] \) is the interval of integration. ### Step 2: Set up the integral In this case: - \( f(x) = \frac{1}{x^3} \) - The limits of integration are \( a = 4 \) and \( b = 8 \). Thus, the volume can be expressed as: \[ V = 2\pi \int_{4}^{8} x \cdot \frac{1}{x^3} \, dx \] ### Step 3: Simplify the integrand The integrand simplifies to: \[ x \cdot \frac{1}{x^3} = \frac{1}{x^2} \] So the integral becomes: \[ V = 2\pi \int_{4}^{8} \frac{1}{x^2} \, dx \] ### Step 4: Calculate the integral Now we can calculate the integral: \[ \int \frac{1}{x^2} \, dx = -\frac{1}{x} \] Thus, we evaluate: \[ V = 2\pi \left[ -\frac{1}{x} \right]_{4}^{8} \] Calculating the definite integral: \[ V = 2\pi \left( -\frac{1}{8} + \frac{1}{4} \right) \] \[ = 2\pi \left( -\frac{1}{8} + \frac{2}{8} \right) \] \[ = 2\pi \left( \frac{1}{8} \right) \] \[ = \frac{2\pi}{8} = \frac{\pi}{4} \] ### Step 5: Final volume calculation Now, we multiply by 2: \[ V = 2\pi \cdot \frac{1}{8} = \frac{\pi}{4} \] ### Conclusion The volume of the solid obtained by rotating the region bounded by the given curves about the \( y \)-axis is: \[ V = \frac{\pi}{4} \] It seems there was a misunderstanding in the initial volume calculation. The correct volume is \( \frac{\pi}{4} \), not \( \frac{3\pi^2}{32} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let's dive into how you can effectively visualize and solve volume problems through rotation! Imagine this curved region as a quirky ice cream cone that you want to scoop out from all sides. The area between the curves \(y = \frac{1}{x^3}\) and the line \(y = 0\) will create a beautiful 3D shape when spun around the \(y\)-axis, a bit like forming a candy shell! When calculating volumes of solids of revolution, remember to confidently use the disk or washer method. It’s vital to set up your integrals correctly based on the axis of rotation. Double-check your limits from \(x=4\) to \(x=8\) and ensure you're taking the proper radius, which in this case is determined by the function. Watch for common pitfalls like mixing up the axis or miscalculating the bounds – they can turn a masterpiece into a messy splatter!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad