a Simplify: \( \begin{array}{lll}\text { a } \frac{x}{3}+\frac{x-1}{4} & \text { b } \frac{x+2}{3}-\frac{2-x}{6} & \text { e } \frac{2 x+1}{5}-\frac{x-1}{10}\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To simplify the expressions: a) For \( \frac{x}{3} + \frac{x-1}{4} \): The least common multiple (LCM) of 3 and 4 is 12. Rewriting each term: \[ \frac{x}{3} = \frac{4x}{12} \quad \text{and} \quad \frac{x-1}{4} = \frac{3(x-1)}{12} = \frac{3x - 3}{12} \] Now combine: \[ \frac{4x + 3x - 3}{12} = \frac{7x - 3}{12} \] b) For \( \frac{x+2}{3} - \frac{2-x}{6} \): The LCM of 3 and 6 is 6. Rewriting: \[ \frac{x+2}{3} = \frac{2(x+2)}{6} = \frac{2x + 4}{6} \quad \text{and} \quad \frac{2-x}{6} = \frac{2-x}{6} \] Now combine: \[ \frac{2x + 4 - (2 - x)}{6} = \frac{2x + 4 - 2 + x}{6} = \frac{3x + 2}{6} \] e) For \( \frac{2x+1}{5} - \frac{x-1}{10} \): The LCM of 5 and 10 is 10. Rewriting: \[ \frac{2x+1}{5} = \frac{2(2x+1)}{10} = \frac{4x + 2}{10} \quad \text{and} \quad \frac{x-1}{10} = \frac{x-1}{10} \] Now combine: \[ \frac{4x + 2 - (x - 1)}{10} = \frac{4x + 2 - x + 1}{10} = \frac{3x + 3}{10} = \frac{3(x + 1)}{10} \] Final results: a) \( \frac{7x - 3}{12} \) b) \( \frac{3x + 2}{6} \) e) \( \frac{3(x + 1)}{10} \)