Pregunta
upstudy study bank question image url

\( \frac { \partial z } { \partial x } = \lim _ { h \rightarrow 0 } \frac { z ( x + h , y ) - z ( x , y ) } { h } \)

Ask by Wheeler Henry. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The partial derivative of \( z \) with respect to \( x \) is defined as the limit of the difference quotient as \( h \) approaches 0. It measures how \( z \) changes when \( x \) changes slightly, keeping \( y \) constant.

Solución

You've provided the definition of the **partial derivative** of a function \( z = z(x, y) \) with respect to the variable \( x \). Let's break down and explain each component of the expression: \[ \frac{\partial z}{\partial x} = \lim_{h \rightarrow 0} \frac{z(x + h, y) - z(x, y)}{h} \] ### Components Explained: 1. **Partial Derivative (\( \frac{\partial z}{\partial x} \))**: - **Definition**: It measures how the function \( z(x, y) \) changes as only the variable \( x \) changes, while keeping \( y \) constant. - **Interpretation**: It tells you the rate at which \( z \) increases or decreases as \( x \) increases, assuming \( y \) does not change. 2. **Limit Expression (\( \lim_{h \rightarrow 0} \frac{z(x + h, y) - z(x, y)}{h} \))**: - **Numerator (\( z(x + h, y) - z(x, y) \))**: - Represents the change in the function \( z \) when \( x \) is increased by a small amount \( h \), while \( y \) remains the same. - **Denominator (\( h \))**: - The small increment by which \( x \) is increased. - **Limit as \( h \rightarrow 0 \)**: - Ensures that we're looking at the instantaneous rate of change as the increment \( h \) becomes infinitesimally small. ### Interpretation: The partial derivative \( \frac{\partial z}{\partial x} \) essentially captures the slope of the function \( z(x, y) \) in the direction of the \( x \)-axis. It tells you how sensitive the function \( z \) is to small changes in \( x \), holding \( y \) constant. ### Example: Suppose \( z(x, y) = x^2 y + \sin(x) \). Let's find \( \frac{\partial z}{\partial x} \) using the limit definition. 1. **Compute \( z(x + h, y) \)**: \[ z(x + h, y) = (x + h)^2 y + \sin(x + h) \] 2. **Subtract \( z(x, y) \)**: \[ z(x + h, y) - z(x, y) = [(x + h)^2 y + \sin(x + h)] - [x^2 y + \sin(x)] = 2xhy + h^2 y + \sin(x + h) - \sin(x) \] 3. **Divide by \( h \)**: \[ \frac{z(x + h, y) - z(x, y)}{h} = 2xy + h y + \frac{\sin(x + h) - \sin(x)}{h} \] 4. **Take the limit as \( h \rightarrow 0 \)**: \[ \frac{\partial z}{\partial x} = \lim_{h \rightarrow 0} \left(2xy + h y + \frac{\sin(x + h) - \sin(x)}{h}\right) = 2xy + 0 + \cos(x) = 2xy + \cos(x) \] ### Conclusion: The expression you've provided is the foundational definition for computing the partial derivative of a function with respect to one of its variables. Understanding this concept is crucial in fields like calculus, physics, engineering, and any area that involves multivariable functions.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The equation you provided represents the definition of the partial derivative of \( z \) with respect to \( x \). This concept is crucial in multivariable calculus, allowing us to understand how a function changes as we vary one of its input variables while keeping others constant. It’s like tuning the volume on your favorite song while ignoring the bass and treble controls! In real-world applications, understanding partial derivatives helps in fields like physics, engineering, and economics. For instance, in thermodynamics, we use partial derivatives to analyze how pressure changes concerning volume while keeping temperature constant. It’s kind of like adjusting the thermostat in your car while still applying the brakes!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad