Pregunta
upstudy study bank question image url

Mrs. Varner deposited \( q \) dollars in a bank account that has been earning annual interest. The total value of the account is based on the function \( f(x)=q \cdot 1.025^{x} \), where \( x \) represents the number of years the money has been in the account. If no deposits or withdrawals are made after the initial deposit, which equation represents the total value of the account 5 years from now? \( f(x)=q \cdot 1.025^{x}+5 \) \( f(x)=q \cdot 1.025^{x+5} \) \( f(x)=q \cdot 1.025^{x-5} \) \( f(x)=q \cdot 1.025^{x}-5 \)

Ask by Bernard Warren. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The total value of the account 5 years from now is represented by \( f(x) = q \cdot 1.025^{x+5} \).

Solución

To determine the total value of Mrs. Varner's bank account **5 years from now**, we'll analyze the given function and the provided options. ### **Given:** - **Initial Deposit:** \( q \) dollars - **Interest Rate:** 2.5% annually (since \( 1.025 \) represents a 2.5% increase each year) - **Function for Account Value:** \( f(x) = q \cdot 1.025^{x} \), where \( x \) is the number of years the money has been in the account. ### **Objective:** Find the equation that represents the **total value** of the account **5 years from now**. ### **Approach:** 1. **Understand the Function:** - The function \( f(x) = q \cdot 1.025^{x} \) gives the account balance after \( x \) years. 2. **5 Years from Now:** - To find the balance **5 years from now**, we essentially want to evaluate what the account balance will be at \( x + 5 \) years. - This means we substitute \( x \) with \( x + 5 \) in the original function to get the future value. 3. **Modify the Function:** - \( f(x + 5) = q \cdot 1.025^{x + 5} \) ### **Reviewing the Options:** 1. **\( f(x) = q \cdot 1.025^{x} + 5 \):** - **Incorrect.** This adds 5 dollars to the current balance, which doesn't account for compound interest over 5 years. 2. **\( f(x) = q \cdot 1.025^{x+5} \):** - **Correct.** This correctly adjusts the exponent to account for the additional 5 years of compound interest. 3. **\( f(x) = q \cdot 1.025^{x-5} \):** - **Incorrect.** This subtracts 5 years, implying looking back in time, which is not relevant for future value. 4. **\( f(x) = q \cdot 1.025^{x} - 5 \):** - **Incorrect.** This subtracts 5 dollars from the current balance, which doesn't align with the growth due to interest. ### **Conclusion:** The correct equation that represents the total value of the account **5 years from now** is: \[ f(x) = q \cdot 1.025^{x + 5} \] **Answer:** \( f(x)=q \cdot 1.025^{x+5} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the total value of the account 5 years from now, we need to evaluate the function at \( x = 5 \). This means we want to plug 5 into our existing function. The correct representation will be \( f(5) = q \cdot 1.025^{5} \). Therefore, we can redefine \( f(x) \) to show this future value, so the answer follows the format \( f(x) = q \cdot 1.025^{x} \), with \( x \) signifying years since the deposit. Based on the options, the correct equation representing the total value of the account 5 years from now is none of the provided choices, but they all suggest manipulating the exponent to deal with different years incorrectly. Understanding how compound interest grows over time can be quite fascinating! For instance, if you start with just $1,000 and leave it to grow at an annual interest rate of 2.5%, after 20 years, you'll have a whopping $1,643! This shows how powerful compounding can be when you give it enough time. If you're ever unsure while dealing with compound interest functions, remember to double-check if you're adjusting your exponent correctly based on how many years from the initial deposit you are calculating. A common mistake is shifting the exponent too much or not accommodating for the correct time frame, leading to incorrect future values. Always keep track of your variables!

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad