Pregunta
upstudy study bank question image url

Algebra 1 Chapter 6 Test Review 12) For the function \( f(x)=2(5)^{x} \), describe the following: Domain: \( \qquad \) Range: \( \qquad \) Asymptote: \( \qquad \) Growth or Decay: \( \qquad \) 13) Ms. Timarky deposits \( \$ 300 \) in an account that earns simple interest at an annual rate of \( 2 \% \). Ms. Waugh deposits \( \$ 300 \) in an account that earns \( 2 \% \) interest and is compounded annually. After 5 years, who has more money in their account and why? 14) An exponential function can be modeled by the function \( P=2(1.45)^{x} \). Which of the following statements is true? Select all that apply. A. \( \square \) This function models exponential growth. B. \( \square \) This function models exponential decay. C. \( \square \) The initial amount is 0.45 . D. \( \square \) The initial amount is 2 . E. \( \square \) The rate is \( 1.45 \% \). F. \( \square \) The rate is \( 45 \% \).

Ask by Munoz Bryant. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **Problem 12**: - Domain: All real numbers - Range: Positive real numbers - Asymptote: \( y = 0 \) - Growth or Decay: Growth - **Problem 13**: Ms. Waugh has more money because compound interest grows faster than simple interest. - **Problem 14**: True statements are: - A. This function models exponential growth. - D. The initial amount is 2. - F. The rate is 45%.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

For the function \( f(x)=2(5)^{x} \): The domain is all real numbers, as you can input any value for \( x \) without restriction. The range is all positive real numbers, since the function never crosses the x-axis and only produces values greater than zero. The asymptote is the horizontal line \( y=0 \), which the graph approaches but never touches as \( x \) decreases. This function exhibits growth since the base (5) is greater than 1, indicating that as \( x \) increases, \( f(x) \) will also increase. When comparing Ms. Timarky's and Ms. Waugh's investments after 5 years, Ms. Waugh will have more money in her account. Simple interest is calculated linearly, yielding \( \$ 300 + (\$ 300 \times 0.02 \times 5) = \$ 330 \). In contrast, Ms. Waugh’s compounded interest grows exponentially, calculated as \( P = 300(1 + 0.02)^5 \). After 5 years, her account would show approximately \( \$ 330.60 \), outpacing Ms. Timarky’s total. So, compounding works wonders! For the function \( P=2(1.45)^{x} \): The correct choices are A and D. This function models exponential growth because the base (1.45) is greater than 1, indicating the amount increases as \( x \) increases. The initial amount is indeed 2, which represents the value of \( P \) when \( x=0 \). So, while it may look tempting to dive into the percentages thinking of decay, this function is clearly growing!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad