Solve the system by substitution. \[ \begin{array}{r}-3 x+4 y=-1 \\ x=y+1\end{array} \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
Let's start by substituting the expression for \( x \) from the second equation into the first equation. The second equation is \( x = y + 1 \). Now, we can substitute this into the first equation: \[ -3(y + 1) + 4y = -1 \] Expanding this gives: \[ -3y - 3 + 4y = -1 \] Combining like terms results in: \[ y - 3 = -1 \] Adding 3 to both sides yields: \[ y = 2 \] Now that we have \( y \), we can substitute back into the equation for \( x \): \[ x = y + 1 = 2 + 1 = 3 \] So the solution to the system is: \[ (x, y) = (3, 2) \]