Pregunta
upstudy study bank question image url

Find the indicated quantities for \( f(x)=3 \mathrm{x}^{2} \). (A) The slope of the secant line through the points \( (2, f(2)) \) and \( (6, f(6)) \). (B) The slope of the secant line through the points \( (2, f(2)) \) and \( (2+\mathrm{h}, \mathrm{f}(2+\mathrm{h})), \mathrm{h} \neq 0 \) - (C) The slope of the graph at \( (2, f(2)) \) (A) The slope of the secant line through the points \( (2, f(2)) \) and \( (6, f(6)) \) is (Type an integer or a simplfied fraction.) (B) The slope of the secant line through the points \( (2, f(2)) \) and \( (2+h, f(2+h)), \mathrm{h} \neq 0 \), is (C) The slope of the graph at \( (2, f(2)) \) is \( \square \). (Type an integer or a simplitied fraction.)

Ask by Ayala Kirk. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Solutions:** (A) The slope of the secant line through \( (2, f(2)) \) and \( (6, f(6)) \) is **24**. (B) The slope of the secant line through \( (2, f(2)) \) and \( (2+h, f(2+h)) \), where \( h \neq 0 \), is **12 + 3h**. (C) The slope of the graph at \( (2, f(2)) \) is **12**.

Solución

Let's analyze each part step by step for the function \( f(x) = 3x^2 \). ### (A) Slope of the Secant Line through \( (2, f(2)) \) and \( (6, f(6)) \): The slope of a secant line between two points \( (x_1, f(x_1)) \) and \( (x_2, f(x_2)) \) is given by: \[ \text{Slope} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \] For \( x_1 = 2 \) and \( x_2 = 6 \): \[ f(2) = 3(2)^2 = 12 \] \[ f(6) = 3(6)^2 = 108 \] \[ \text{Slope} = \frac{108 - 12}{6 - 2} = \frac{96}{4} = 24 \] **Answer for (A):** \( 24 \) --- ### (B) Slope of the Secant Line through \( (2, f(2)) \) and \( (2+h, f(2+h)) \), \( h \neq 0 \): Using the same slope formula: \[ \text{Slope} = \frac{f(2+h) - f(2)}{(2+h) - 2} = \frac{f(2+h) - 12}{h} \] Calculate \( f(2+h) \): \[ f(2+h) = 3(2+h)^2 = 3(4 + 4h + h^2) = 12 + 12h + 3h^2 \] Now, plug this into the slope formula: \[ \text{Slope} = \frac{12 + 12h + 3h^2 - 12}{h} = \frac{12h + 3h^2}{h} = 12 + 3h \] **Answer for (B):** \( 12 + 3h \) --- ### (C) Slope of the Graph at \( (2, f(2)) \): The slope of the graph at a particular point is the derivative of the function at that point. First, find the derivative \( f'(x) \): \[ f(x) = 3x^2 \implies f'(x) = 6x \] Now, evaluate the derivative at \( x = 2 \): \[ f'(2) = 6 \times 2 = 12 \] **Answer for (C):** \( 12 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the indicated quantities for \( f(x) = 3x^2 \): (A) First, we calculate \( f(2) \) and \( f(6) \): \( f(2) = 3(2)^2 = 3 \times 4 = 12 \) \( f(6) = 3(6)^2 = 3 \times 36 = 108 \) Now, the slope of the secant line through the points \( (2, 12) \) and \( (6, 108) \) is: \[ \text{slope} = \frac{f(6) - f(2)}{6 - 2} = \frac{108 - 12}{4} = \frac{96}{4} = 24 \] (B) The slope of the secant line through the points \( (2, f(2)) \) and \( (2+h, f(2+h)) \): Calculate \( f(2+h) = 3(2+h)^2 = 3(4 + 4h + h^2) = 12 + 12h + 3h^2 \). Now, the slope is: \[ \text{slope} = \frac{f(2+h) - f(2)}{(2+h) - 2} = \frac{(12 + 12h + 3h^2) - 12}{h} = \frac{12h + 3h^2}{h} = 12 + 3h \] (C) To find the slope of the graph at \( (2, f(2)) \), we need to compute the derivative \( f'(x) \): \[ f'(x) = 6x \] Thus, at \( x = 2 \): \[ f'(2) = 6(2) = 12 \] So, the answers are: (A) 24 (B) \( 12 + 3h \) (C) 12

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad