Write the following expression as a single definite integral of the form \( \int_{a}^{b} f(x) d x \) \[ \int_{-2}^{2} f(x) d x+\int_{2}^{3} f(x) d x-\int_{-2}^{-1} f(x) d x \] SUBMIT ANSWER
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To combine the given integrals into a single definite integral, we can adjust their limits of integration accordingly. First, we have: \[ \int_{-2}^{2} f(x) d x + \int_{2}^{3} f(x) d x - \int_{-2}^{-1} f(x) d x \] We can rewrite the third integral as: \[ -\int_{-2}^{-1} f(x) d x = \int_{-1}^{-2} f(x) d x \] (Note: The negative sign reverses the limits.) Now, the expression becomes: \[ \int_{-2}^{2} f(x) d x + \int_{2}^{3} f(x) d x + \int_{-1}^{-2} f(x) d x \] Combining these integrals, we focus on the intervals: \[ [-2, -1], [-1, 2], [2, 3] \] This can be merged into a single integral from \([-2, 3]\) while appropriately adjusting for each piece. Thus, we have: \[ \int_{-2}^{3} f(x) d x \] So, the expression as a single definite integral is: \[ \int_{-2}^{3} f(x) d x \]