Pregunta
upstudy study bank question image url

Jation in vertex form for the parabola with focus \( (0,-7) \) and directrix \( y=9 \) fractions.

Ask by Gray Watson. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the parabola in vertex form is \( y = -\frac{1}{32}x^{2} + 1 \).

Solución

To find the equation of the parabola in vertex form given the focus and directrix, follow these steps: ### Given: - **Focus:** \((0, -7)\) - **Directrix:** \(y = 9\) ### Step 1: Find the Vertex The vertex of a parabola is exactly halfway between the focus and the directrix. \[ \text{Vertex } y\text{-coordinate} = \frac{-7 + 9}{2} = \frac{2}{2} = 1 \] Since the focus is at \((0, -7)\) and directly below the vertex, the vertex is: \[ \text{Vertex } = (0, 1) \] ### Step 2: Determine the Parameter \(p\) The distance \(p\) between the vertex and the focus (or directrix) determines the "width" and the direction the parabola opens. \[ p = \text{Vertex } y\text{-coordinate} - \text{Focus } y\text{-coordinate} = 1 - (-7) = 8 \] Since the focus is below the vertex, the parabola opens downward, so \(p = -8\). ### Step 3: Write the Vertex Form Equation The vertex form of a parabola that opens vertically is: \[ y = a(x - h)^2 + k \] Where: - \((h, k)\) is the vertex. - \(a = \frac{1}{4p}\) Substituting the values: \[ a = \frac{1}{4(-8)} = -\frac{1}{32} \] \[ h = 0 \quad \text{and} \quad k = 1 \] So, the equation becomes: \[ y = -\frac{1}{32}(x - 0)^2 + 1 \] \[ \boxed{y = -\,\dfrac{1}{32}\,x^{2} + 1} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the equation of the parabola in vertex form, we first determine the vertex, which lies halfway between the focus and the directrix. The focus at \( (0,-7) \) and the directrix \( y=9 \) gives us a vertex at \( (0,1) \). The distance from the vertex to the focus (or the directrix) is \( 8 \), which means \( p = -8 \) for a parabola opening downwards. The vertex form can then be expressed as \( y = a(x-h)^2 + k \), where \( (h,k) \) is the vertex. Plugging in our values, the equation of the parabola is: \[ y = -\frac{1}{32}(x-0)^2 + 1 \] Did you know that parabolas aren’t just abstract concepts? They actually appear in nature and engineering! For instance, the path of a projectile follows a parabolic trajectory. Understanding this shape helps in optimizing the design of structures like bridges, antennas, and even satellite dishes, which utilize parabolic reflectors to focus signals. Another fun fact: parabolas have unique reflective properties! If you shine a light inside a parabola, the rays reflect off the parabolic surface and pass through the focus. This principle is used in car headlights, sound dishes, and even telescopes to gather and focus light, making it a practical application in our daily lives and technology!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad