Pregunta
upstudy study bank question image url

From the top of a 210 - ft lighthouse, the angle of depression to a ship in the ocean is \( 16^{\circ} \). How far is the ship from the base of the lighthouse? distance \( \approx \) Report answer accurate to 1 decimal place.

Ask by Burgess Hilton. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The ship is approximately 698.5 feet from the base of the lighthouse.

Solución

To find the distance of the ship from the base of the lighthouse, we can use the tangent function in trigonometry. Given: - Height of the lighthouse = 210 ft - Angle of depression = \( 16^{\circ} \) We can use the tangent function to find the distance of the ship from the base of the lighthouse: \[ \tan(\text{angle of depression}) = \frac{\text{opposite side}}{\text{adjacent side}} \] In this case, the opposite side is the height of the lighthouse (210 ft) and the adjacent side is the distance of the ship from the base of the lighthouse. Let's denote the distance of the ship from the base of the lighthouse as \( x \). Using the tangent function: \[ \tan(16^{\circ}) = \frac{210}{x} \] Now, we can solve for \( x \) to find the distance of the ship from the base of the lighthouse. Calculate the value by following steps: - step0: Calculate: \(\frac{210}{\tan\left(16\right)}\) - step1: Calculate the trigonometric value: \(698.527871\) The distance of the ship from the base of the lighthouse is approximately 698.5 ft.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the distance from the base of the lighthouse to the ship, we can use the tangent of the angle of depression. We know the height of the lighthouse (210 ft) and the angle of depression (16°). The angle of depression is equal to the angle of elevation from the ship to the top of the lighthouse. The formula is: \[ \tan(16^\circ) = \frac{\text{height}}{\text{distance}} \implies \text{distance} = \frac{\text{height}}{\tan(16^\circ)} \] Substituting the height, we have: \[ \text{distance} = \frac{210}{\tan(16^\circ)} \approx \frac{210}{0.2867} \approx 731.3 \text{ ft} \] So, the distance from the ship to the base of the lighthouse is approximately \( 731.3 \) feet.

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad