Pregunta
upstudy study bank question image url

Write the equation in vertex form for the parabola with focus \( (0,10) \) and directrix \( y=6 \). Simplify any fractions.

Ask by Rose Cole. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the parabola in vertex form is \( y = \frac{1}{8}x^{2} + 8 \).

Solución

To find the equation of the parabola in vertex form given the focus \( (0,10) \) and the directrix \( y=6 \), follow these steps: 1. **Determine the Vertex:** - The vertex lies exactly midway between the focus and the directrix. - The y-coordinate of the vertex is \( \frac{10 + 6}{2} = 8 \). - Thus, the vertex is at \( (0, 8) \). 2. **Find the Value of \( p \):** - \( p \) is the distance from the vertex to the focus. - \( p = 10 - 8 = 2 \). 3. **Determine the Orientation:** - Since the focus is above the directrix, the parabola opens **upward**. 4. **Use the Vertex Form Equation:** - The vertex form of a parabola that opens upward is: \[ y = a(x - h)^2 + k \] where \( (h, k) \) is the vertex. - Here, \( h = 0 \) and \( k = 8 \), so: \[ y = a x^2 + 8 \] 5. **Calculate \( a \):** - The value of \( a \) is related to \( p \) by the formula \( a = \frac{1}{4p} \). - Substituting \( p = 2 \): \[ a = \frac{1}{4 \times 2} = \frac{1}{8} \] 6. **Write the Final Equation:** - Substitute \( a \) back into the vertex form: \[ y = \frac{1}{8}x^2 + 8 \] **Final Answer:** \[ y = \frac{1}{8}\,x^{2} + 8 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the vertex form of the parabola, we first identify the vertex, which is located at the midpoint between the focus and the directrix. The focus is at \( (0, 10) \) and the directrix is \( y = 6 \). Calculating the vertex: \[ \text{Vertex} = \left(0, \frac{10 + 6}{2}\right) = \left(0, 8\right) \] Next, we determine the distance \( p \) from the vertex to the focus (or to the directrix). From the vertex \( y = 8 \) to the focus \( y = 10 \): \[ p = 10 - 8 = 2 \] Since the focus is above the directrix, the parabola opens upwards. The standard vertex form for a parabola that opens upwards is: \[ y = a(x - h)^2 + k \] where \( (h, k) \) is the vertex and \( a = \frac{1}{4p} \). Substituting \( h = 0 \), \( k = 8 \), and \( p = 2 \): \[ a = \frac{1}{4 \cdot 2} = \frac{1}{8} \] Thus, the vertex form of the parabola is: \[ y = \frac{1}{8}(x - 0)^2 + 8 \] In simplified form, the equation of the parabola is: \[ y = \frac{1}{8}x^2 + 8 \]

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad