Pregunta
upstudy study bank question image url

6. Johan has two bags. The first bag contains 2 red and 7 white balls, while the second contains 4 red and 5 white balls. One of the bags is selected randomly, and a ball is drawn from this bag. If the ball drawn is white, what is the probability that it is drawn from the second bag? A. \( \frac{5}{12} \) B. \( \frac{1}{2} \) C. \( \frac{5}{9} \) D. \( \frac{7}{9} \) E. \( \frac{70}{81} \)

Ask by Long Weston. in Egypt
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that the white ball is from the second bag is \( \frac{5}{12} \).

Solución

To determine the probability that a white ball drawn is from the second bag, we'll use **Bayes' Theorem**. **Given:** - **Bag 1:** 2 red and 7 white balls (Total = 9 balls) - **Bag 2:** 4 red and 5 white balls (Total = 9 balls) - **Probability of choosing either bag:** \( \frac{1}{2} \) **Steps:** 1. **Calculate the probability of drawing a white ball from each bag:** - \( P(\text{White} | \text{Bag 1}) = \frac{7}{9} \) - \( P(\text{White} | \text{Bag 2}) = \frac{5}{9} \) 2. **Determine the total probability of drawing a white ball:** \[ P(\text{White}) = P(\text{Bag 1}) \times P(\text{White} | \text{Bag 1}) + P(\text{Bag 2}) \times P(\text{White} | \text{Bag 2}) \] \[ P(\text{White}) = \frac{1}{2} \times \frac{7}{9} + \frac{1}{2} \times \frac{5}{9} = \frac{7 + 5}{18} = \frac{12}{18} = \frac{2}{3} \] 3. **Apply Bayes' Theorem to find the probability that the white ball is from Bag 2:** \[ P(\text{Bag 2} | \text{White}) = \frac{P(\text{White} | \text{Bag 2}) \times P(\text{Bag 2})}{P(\text{White})} \] \[ P(\text{Bag 2} | \text{White}) = \frac{\frac{5}{9} \times \frac{1}{2}}{\frac{2}{3}} = \frac{\frac{5}{18}}{\frac{12}{18}} = \frac{5}{12} \] **Answer:** A. \( \frac{5}{12} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve this problem, we need to apply Bayes' Theorem. Let's denote: - \( B_1 \): the event that the first bag is chosen, - \( B_2 \): the event that the second bag is chosen, - \( W \): the event that a white ball is drawn. We can find the probability of drawing a white ball from each bag and then use Bayes' theorem to find the probability that the white ball came from the second bag given that a white ball was drawn. 1. **Calculate the total probability of drawing a white ball**: - Probability of choosing Bag 1: \( P(B_1) = \frac{1}{2} \) - Probability of choosing Bag 2: \( P(B_2) = \frac{1}{2} \) - Probability of drawing a white ball from Bag 1: \( P(W | B_1) = \frac{7}{9} \) (since there are 7 white balls out of a total of 2 red + 7 white = 9 balls) - Probability of drawing a white ball from Bag 2: \( P(W | B_2) = \frac{5}{9} \) (since there are 5 white balls out of a total of 4 red + 5 white = 9 balls) Using the law of total probability: \[ P(W) = P(W | B_1) P(B_1) + P(W | B_2) P(B_2) = \left(\frac{7}{9} \cdot \frac{1}{2}\right) + \left(\frac{5}{9} \cdot \frac{1}{2}\right) = \frac{7}{18} + \frac{5}{18} = \frac{12}{18} = \frac{2}{3} \] 2. **Now apply Bayes' Theorem**: \[ P(B_2 | W) = \frac{P(W | B_2) P(B_2)}{P(W)} = \frac{\left(\frac{5}{9}\right) \left(\frac{1}{2}\right)}{\frac{2}{3}} = \frac{\frac{5}{18}}{\frac{2}{3}} = \frac{5}{18} \cdot \frac{3}{2} = \frac{5 \times 3}{18 \times 2} = \frac{15}{36} = \frac{5}{12} \] Thus, the probability that the drawn white ball is from the second bag is \( \frac{5}{12} \). The correct answer is **A. \( \frac{5}{12} \)**.

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad