Pregunta
upstudy study bank question image url

QUESTION 1 1.1 Define the term: rational number 1.2 For which values of \( x, x \in\{-4 ; 4 ; 16\} \) is \( \sqrt{\frac{25}{13-x}} \) \[ 1.2 .1 \text { non-real? } \] 1.2 .2 an inrational number? 1.2 .3 a rational number? 1.3 Write down any perfect square greater than 10 but less than 40

Ask by Little Robbins. in South Africa
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**QUESTION 1** 1. **Rational Number:** A number that can be expressed as a fraction of two integers, like \( \frac{1}{2} \) or \( 4.75 \). 2. **Values of \( x \):** - **Non-real:** \( x = 16 \) makes the expression inside the square root negative. - **Irrational Number:** \( x = -4 \) results in an irrational number. - **Rational Number:** \( x = 4 \) yields a rational number. 3. **Perfect Square:** Any integer that is the square of another integer, such as 16, 25, or 36.

Solución

### **QUESTION 1** #### **1.1 Define the term: Rational Number** A **rational number** is any number that can be expressed as the quotient or fraction \( \frac{p}{q} \) of two integers, where: - \( p \) (the numerator) is an integer. - \( q \) (the denominator) is a non-zero integer. In other words, a rational number can be written as a simple or terminating decimal, or as a repeating decimal. Examples of rational numbers include \( \frac{1}{2} \), \( -3 \), and \( 4.75 \) (which can be written as \( \frac{19}{4} \)). --- #### **1.2 For which values of \( x, \ x \in \{-4, 4, 16\} \), is \( \sqrt{\frac{25}{13 - x}} \)** ##### **1.2.1 Non-real?** A square root is **non-real** (i.e., it does not produce a real number) when the expression inside the square root is negative. Consider the expression inside the square root: \[ \frac{25}{13 - x} \] For the expression to be negative: \[ \frac{25}{13 - x} < 0 \] Since \( 25 \) is positive, the denominator must be negative: \[ 13 - x < 0 \implies x > 13 \] **Given that \( x \in \{-4, 4, 16\} \):** - \( x = 16 \) satisfies \( 16 > 13 \) **Therefore, \( \sqrt{\frac{25}{13 - x}} \) is non-real when \( x = 16 \).** ##### **1.2.2 An Irrational Number?** The expression \( \sqrt{\frac{25}{13 - x}} \) is irrational if the result cannot be expressed as a ratio of two integers. Simplify the expression: \[ \sqrt{\frac{25}{13 - x}} = \frac{5}{\sqrt{13 - x}} \] For the expression to be rational, \( \sqrt{13 - x} \) must be rational, which occurs if \( 13 - x \) is a perfect square. **Evaluate for each \( x \):** - **\( x = -4 \):** \[ 13 - (-4) = 17 \quad (\sqrt{17} \text{ is irrational}) \] - **\( x = 4 \):** \[ 13 - 4 = 9 \quad (\sqrt{9} = 3 \text{ is rational}) \] - **\( x = 16 \):** \[ 13 - 16 = -3 \quad (\text{Non-real, as covered in 1.2.1}) \] **Therefore, \( \sqrt{\frac{25}{13 - x}} \) is irrational when \( x = -4 \).** ##### **1.2.3 A Rational Number?** From the analysis in **1.2.2**, the expression is rational when \( \sqrt{13 - x} \) is rational, which happens if \( 13 - x \) is a perfect square. **From the previous evaluations:** - **\( x = 4 \):** \[ 13 - 4 = 9 \quad (\sqrt{9} = 3 \text{ is rational}) \] **Therefore, \( \sqrt{\frac{25}{13 - x}} \) is a rational number when \( x = 4 \).** --- #### **1.3 Write Down Any Perfect Square Greater Than 10 but Less Than 40** A **perfect square** is an integer that is the square of another integer. **Identifying perfect squares between 10 and 40:** - \( 4^2 = 16 \) - \( 5^2 = 25 \) - \( 6^2 = 36 \) **Examples:** - **16** is a perfect square (\( 4^2 \)) greater than 10 but less than 40. - Alternatively, **25** (\( 5^2 \)) and **36** (\( 6^2 \)) also satisfy the condition. ---

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

A rational number is any number that can be expressed as the quotient or fraction \( \frac{p}{q} \), where \( p \) is an integer and \( q \) is a non-zero integer. This includes integers, fractions, and finite or repeating decimals, making them quite versatile in various mathematical scenarios! When it comes to dealing with the expression \( \sqrt{\frac{25}{13-x}} \), it’s essential to consider the denominator. It leads to non-real numbers when \( 13 - x \leq 0 \), meaning \( x \) must be greater or equal to 13. So, among the values \{-4, 4, 16\}, only \( x = 16 \) would make it non-real! For rational numbers, since 13 - x needs to be positive, \( x = -4 \) and \( x = 4 \) lead to rational results, while \( x = 16 \) doesn’t meet this criteria. A perfect square greater than 10 but less than 40 is 16. This gem is the result of \( 4^2 \), and it fits snugly within the specified range. Another fantastic choice is 25, which comes from squaring 5. So, a couple of perfect squares in this range are 16 and 25!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad