Pregunta
Find an ordered pair \( (x, y) \) that is a solution to the equation. \( \begin{array}{l}6 x+y=7 \\ (x, y)=(\square, \square)\end{array} \)
Ask by Bowers John. in the United States
Feb 02,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
One solution is \( (1, 1) \).
Solución
To find an ordered pair \( (x, y) \) that is a solution to the equation \( 6x + y = 7 \), we can express \( y \) in terms of \( x \) and then choose a value for \( x \) to find the corresponding \( y \).
1. Start with the equation:
\[
6x + y = 7
\]
2. Rearranging the equation to solve for \( y \):
\[
y = 7 - 6x
\]
Now, we can choose a value for \( x \) to find \( y \). Let's choose \( x = 1 \):
3. Substitute \( x = 1 \) into the equation for \( y \):
\[
y = 7 - 6(1) = 7 - 6 = 1
\]
Thus, when \( x = 1 \), \( y = 1 \). Therefore, one ordered pair that is a solution to the equation is:
\[
(x, y) = (1, 1)
\]
So, the final answer is:
\[
(x, y) = (1, 1)
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To find an ordered pair \( (x, y) \) that satisfies the equation \( 6x + y = 7 \), we can select a value for \( x \) and then solve for \( y \). Let's pick \( x = 1 \): Substituting \( x = 1 \) into the equation: \[ 6(1) + y = 7 \] This simplifies to: \[ 6 + y = 7 \] Now, isolate \( y \): \[ y = 7 - 6 = 1 \] Thus, one ordered pair solution is: \[ (x, y) = (1, 1) \] So the solution is \( (x, y) = (1, 1) \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium