In a right triangle where one angle measures 30 degrees, how do you express the secant of that angle?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
In a right triangle with a 30-degree angle, the secant function can be found using the cosine of that angle. Since secant is the reciprocal of cosine, we first note that the cosine of 30 degrees is \( \frac{\sqrt{3}}{2} \). Therefore, the secant of 30 degrees is \( \sec(30^\circ) = \frac{1}{\cos(30^\circ)} = \frac{2}{\sqrt{3}} \), which can also be rationalized to \( \sec(30^\circ) = \frac{2\sqrt{3}}{3} \). Now, if you ever find yourself scratching your head over these functions, remember that the unit circle is your best friend! At 30 degrees, or \( \frac{\pi}{6} \) radians, the coordinates are \( \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right) \). This means you can always derive sine, cosine, and secant values from these simple coordinates. Who knew geometry could be such a useful, not to mention fun, puzzle?