Pregunta
upstudy study bank question image url

Create a polynomial \( p \) that has the desired characteristics. You may leave the polynomial in factored form. The zeros of \( p \) are -4 and 2 . - \( x=-4 \) is a zero of multiplicity 2 . - \( p(x) \) has \( y \)-intercept \( (0,-192) \) is degree 3 . \( p(x)= \)

Ask by Hodgson Stewart. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ p(x) = 6(x + 4)^2(x - 2) \]

Solución

To construct the polynomial \( p(x) \) with the given characteristics, follow these steps: 1. **Zeros and Multiplicities:** - The zeros are \( x = -4 \) with multiplicity 2 and \( x = 2 \) with multiplicity 1. - This means the polynomial can be expressed in factored form as: \[ p(x) = a(x + 4)^2(x - 2) \] where \( a \) is a constant coefficient. 2. **Determining the Coefficient \( a \):** - The polynomial has a \( y \)-intercept at \( (0, -192) \), which means \( p(0) = -192 \). - Substitute \( x = 0 \) into the polynomial: \[ p(0) = a(0 + 4)^2(0 - 2) = a \cdot 16 \cdot (-2) = -32a \] - Set this equal to \(-192\) and solve for \( a \): \[ -32a = -192 \implies a = 6 \] 3. **Final Polynomial:** - Substitute \( a = 6 \) back into the factored form: \[ p(x) = 6(x + 4)^2(x - 2) \] **Answer:** \[ p(x) = 6\, (\,x + 4\,)^2\, (\,x - 2\,) \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To create the polynomial \( p \) with the given characteristics, let's start with the zeros. Since \( x = -4 \) is a zero of multiplicity 2, this means we will include \( (x + 4)^2 \) in our polynomial. Also, since there is another zero at \( x = 2 \), we will include \( (x - 2)^1 \). Putting it all together, the polynomial in factored form is: \[ p(x) = k (x + 4)^2 (x - 2) \] where \( k \) is a constant that we will determine based on the \( y \)-intercept. To find \( k \), we know that the \( y \)-intercept is \( (0, -192) \). This means we need to calculate \( p(0) \): \[ p(0) = k(0 + 4)^2(0 - 2) = k(4^2)(-2) = k \cdot 16 \cdot (-2) = -32k \] We want \( p(0) = -192 \), so we can set up the equation: \[ -32k = -192 \] Solving for \( k \), we divide both sides by -32: \[ k = \frac{-192}{-32} = 6 \] Now we can substitute \( k \) back into the polynomial: \[ p(x) = 6(x + 4)^2 (x - 2) \] So, the polynomial in its final factored form is: \[ p(x) = 6(x + 4)^2 (x - 2) \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad