Pregunta
Find the midpoint of the line segment whose endpoints are given. \( (-6,-5),(-3,5) \) The midpoint is \( \square \) of 2 (Simplify your answer.)
Ask by Sanders Riley. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The midpoint is \(\left( -\frac{9}{2},\ 0 \right)\).
Solución
To find the midpoint of the line segment with endpoints \((-6, -5)\) and \((-3, 5)\), you can use the midpoint formula:
\[
\text{Midpoint} = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)
\]
Where \((x_1, y_1)\) and \((x_2, y_2)\) are the coordinates of the two endpoints.
**Step-by-Step Calculation:**
1. **Calculate the x-coordinate of the midpoint:**
\[
\frac{-6 + (-3)}{2} = \frac{-9}{2} = -\frac{9}{2}
\]
2. **Calculate the y-coordinate of the midpoint:**
\[
\frac{-5 + 5}{2} = \frac{0}{2} = 0
\]
**Therefore, the midpoint is:**
\[
\left( -\frac{9}{2},\ 0 \right)
\]
**Final Answer:**
\[
\boxed{\left( -\dfrac{9}{2},\ 0 \right)}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To find the midpoint of the line segment with endpoints \((-6, -5)\) and \((-3, 5)\), you can use the midpoint formula: \[ \text{Midpoint} = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \] Plugging in the coordinates: \[ \text{Midpoint} = \left( \frac{-6 + (-3)}{2}, \frac{-5 + 5}{2} \right) = \left( \frac{-9}{2}, \frac{0}{2} \right) = \left( -\frac{9}{2}, 0 \right) \] So the midpoint is \(\left(-\frac{9}{2}, 0\right)\). The final answer can be expressed as: The midpoint is \( \left(-\frac{9}{2}, 0\right) \) of 2.
preguntas relacionadas
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium