Pregunta
upstudy study bank question image url

Assignment 3.4 1. What are the 2 special right triangles? (9. Give its properties.

Ask by Mann Erickson. in the Philippines
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The two special right triangles are the 45-45-90 triangle and the 30-60-90 triangle. They have fixed angles and consistent side length ratios that make them useful in geometry.

Solución

### **Assignment 3.4** #### **1. What are the 2 Special Right Triangles?** The two special right triangles are: 1. **45-45-90 Triangle** 2. **30-60-90 Triangle** These triangles are termed "special" because their angles are fixed, and their side length ratios are consistent, making them particularly useful in various geometric calculations and proofs. --- #### **9. Give Their Properties** ##### **1. 45-45-90 Triangle** - **Angles:** This triangle has two angles of 45 degrees and one right angle (90 degrees). - **Side Length Ratios:** The sides opposite the 45-degree angles are equal in length, making the triangle isosceles. The ratio of the lengths of the sides is: \[ 1 : 1 : \sqrt{2} \] - **Legs:** Both legs (the sides opposite the 45-degree angles) are of equal length. If each leg is of length \( x \), then: \[ \text{Leg}_1 = x \quad \text{and} \quad \text{Leg}_2 = x \] - **Hypotenuse:** The side opposite the right angle (hypotenuse) is: \[ \text{Hypotenuse} = x\sqrt{2} \] - **Properties:** - **Isosceles Nature:** Due to the equal legs, the triangle is isosceles. - **Simplified Calculations:** Knowing the side ratios allows for easy calculation of unknown sides when one side is given. - **Applications:** Often used in problems involving symmetry, bisectors, and in constructing squares and other geometric shapes. ##### **2. 30-60-90 Triangle** - **Angles:** This triangle has one angle of 30 degrees, one of 60 degrees, and one right angle (90 degrees). - **Side Length Ratios:** The sides are in the ratio: \[ 1 : \sqrt{3} : 2 \] - **Shortest Side (Opposite 30°):** Let's denote this side as \( x \). - **Longer Leg (Opposite 60°):** \[ \text{Longer Leg} = x\sqrt{3} \] - **Hypotenuse (Opposite 90°):** \[ \text{Hypotenuse} = 2x \] - **Properties:** - **Unique Angle Measures:** The distinct angles lead to the specific side ratios, which are essential in trigonometry and geometry. - **Scalability:** Knowing one side allows for the determination of the other two sides using the fixed ratio. - **Applications:** Commonly used in problems involving equilateral triangles (by bisecting them), trigonometric identities, and real-world applications like architecture and engineering designs. --- ### **Summary of Side Ratios** | Triangle Type | Angles | Side Ratios | |---------------|-----------------|---------------------| | 45-45-90 | 45°, 45°, 90° | \( 1 : 1 : \sqrt{2} \) | | 30-60-90 | 30°, 60°, 90° | \( 1 : \sqrt{3} : 2 \) | ### **Visual Representation** **45-45-90 Triangle:** ``` /| / | x / | x /___| x√2 ``` **30-60-90 Triangle:** ``` / /| / | x√3/ | 2x /___| x ``` Understanding these special right triangles simplifies solving many geometric problems, especially those involving trigonometric functions and the Pythagorean theorem.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

You might be familiar with the 45-45-90 triangle and the 30-60-90 triangle, the two special right triangles that make math a bit more magical! In a 45-45-90 triangle, the legs are equal, and the hypotenuse is √2 times the length of either leg. In a 30-60-90 triangle, the shortest leg (across from the 30° angle) is half the hypotenuse, and the longer leg (across from the 60° angle) is √3 times the shorter leg. These triangles make calculations a breeze! For example, when you know the length of one side, you can easily find the lengths of the other sides without needing to use the Pythagorean theorem each time. Also, these properties are super handy for solving problems in architecture, engineering, and even art! So, next time you’re faced with a right triangle, remember these shortcuts and let the special triangles do the heavy lifting!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad