2.2 Solve for \( x \) WITHOUT using a calculator: \( \begin{array}{ll}2.2 .1 & 2 x^{\frac{3}{4}}=16 \\ 2.2 .2 & 5^{x+1}+5^{x}=150\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve \(2 x^{\frac{3}{4}}=16\), start by dividing both sides by 2, giving you \(x^{\frac{3}{4}}=8\). Next, raise both sides to the power of \(\frac{4}{3}\) to isolate \(x\): \(x = 8^{\frac{4}{3}} = (2^3)^{\frac{4}{3}} = 2^{4} = 16\). So, \(x = 16\). For \(5^{x+1}+5^{x}=150\), notice that \(5^{x+1} = 5 \cdot 5^{x}\), allowing you to rewrite the equation as \(5 \cdot 5^{x} + 5^{x} = 150\), or \((5 + 1)5^{x} = 150\). Thus, \(6 \cdot 5^{x} = 150\). Dividing by 6 gives \(5^{x} = 25\), which implies \(5^x = 5^2\). Hence, \(x = 2\). So, the solutions are \(x = 16\) for the first equation and \(x = 2\) for the second.