Pregunta
upstudy study bank question image url

A ferris wheel, with a diameter of 40 m , makes a full rotation in 3 minutes. Passengers board at the bottom of the ferris wheel, which is 2 m above ground. a) Find the equation that best models the height of a passenger. b) Find the height of a passenger who has been riding the ferris wheel for 150 seconds.

Ask by Murray Pierce. in Canada
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The height of a passenger at time \( t \) seconds is given by: \[ h(t) = 22 - 20\,\cos\left(\frac{\pi t}{90}\right) \]

Solución

To model the height of a passenger on the Ferris wheel over time, we'll analyze the given information step by step. ### Given: - **Diameter of Ferris Wheel:** 40 meters - **Radius (A):** \( \frac{40}{2} = 20 \) meters - **Time for one full rotation (Period, \( T \)):** 3 minutes = 180 seconds - **Height of the bottom of the Ferris wheel above ground:** 2 meters ### Part a) Finding the Height Equation **1. Determine the Center Height (D):** Since the bottom of the Ferris wheel is 2 meters above the ground and the radius is 20 meters, the center of the Ferris wheel is: \[ D = 2\, \text{meters} + 20\, \text{meters} = 22\, \text{meters} \] **2. Amplitude (A):** The amplitude represents the maximum deviation from the center height, which is equal to the radius: \[ A = 20\, \text{meters} \] **3. Angular Frequency (B):** The angular frequency relates to how quickly the Ferris wheel makes a full rotation: \[ B = \frac{2\pi}{T} = \frac{2\pi}{180} = \frac{\pi}{90}\, \text{radians per second} \] **4. Phase Shift (C):** Since passengers board at the **lowest point** at \( t = 0 \), the cosine function (which typically starts at a maximum) needs to be shifted to start at a minimum. This can be achieved by introducing a phase shift of \( \pi \): \[ C = \pi \] **5. Constructing the Equation:** Combining these components, the height \( h(t) \) as a function of time \( t \) is: \[ h(t) = D - A \cdot \cos(Bt) \] \[ h(t) = 22\, \text{m} - 20\, \text{m} \cdot \cos\left(\frac{\pi t}{90}\right) \] **Final Equation:** \[ h(t) = 22 - 20\,\cos\left(\frac{\pi t}{90}\right) \] *where \( h(t) \) is the height in meters and \( t \) is the time in seconds.* ### Answer to Part a): The height \( h(t) \) (in meters) of a passenger at time \( t \) (in seconds) is \[ h(t) = 22 - 20\,\cos\left(\frac{\pi t}{90}\right) \].

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The height of a passenger on the ferris wheel can be modeled using a sinusoidal function. The ferris wheel has a diameter of 40 m, which makes the radius 20 m, and with the base being 2 m above ground, the midline of the sinusoidal function is at 22 m (2 m + 20 m). The equation can be expressed as \( h(t) = 20 \sin\left(\frac{2\pi}{180}(t - 90)\right) + 22 \), where \(t\) is measured in seconds. This equation reflects a full rotation every 180 seconds (as 3 minutes = 180 seconds) with a phase shift to start at the bottom. To find the height after 150 seconds, we substitute \(t = 150\) into the equation: \( h(150) = 20 \sin\left(\frac{2\pi}{180}(150 - 90)\right) + 22 \), which simplifies to \( h(150) = 20 \sin\left(\frac{2\pi}{180}(60)\right) + 22 \). Calculating that, \( \sin(60^\circ) = \frac{\sqrt{3}}{2} \), gives \( h(150) = 20 \left(\frac{\sqrt{3}}{2}\right) + 22 \), which equals \( h(150) = 10\sqrt{3} + 22 \). Approximating gives a height of about 37.32 m above ground.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad