Pregunta
upstudy study bank question image url

Exercise 3: (answers on page 341) 1) Evaluate the following: \( \begin{array}{ll}\text { a) } \sum^{12} 5+2(k-3) & \text { c) } \sum_{k=7}^{15}-12+(-2)(-2) \\ \text { b) } \sum_{k=5}^{12} 3(2)^{k-5} & \text { d) } \sum_{k=0}^{8} 2(3)(3)^{k}\end{array} \)

Ask by Bird Edwards. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Answers:** - a) 144 - b) 765 - c) -72 - d) 59,046

Solución

Sure, let's evaluate each of the summations step by step. ### **a) \(\sum_{k=1}^{12} \left(5 + 2(k - 3)\right)\)** 1. **Simplify the expression inside the sum:** \[ 5 + 2(k - 3) = 5 + 2k - 6 = 2k - 1 \] 2. **Split the summation:** \[ \sum_{k=1}^{12} (2k - 1) = 2\sum_{k=1}^{12} k - \sum_{k=1}^{12} 1 \] 3. **Calculate each part:** - Sum of the first 12 natural numbers: \[ \sum_{k=1}^{12} k = \frac{12 \times 13}{2} = 78 \] - Sum of twelve 1's: \[ \sum_{k=1}^{12} 1 = 12 \] 4. **Combine the results:** \[ 2 \times 78 - 12 = 156 - 12 = 144 \] **Answer:** \(144\) --- ### **b) \(\sum_{k=5}^{12} 3 \times 2^{k-5}\)** 1. **Factor out the constant:** \[ 3 \sum_{k=5}^{12} 2^{k-5} \] 2. **Change of variable:** Let \(m = k - 5\), which transforms the limits from \(m = 0\) to \(m = 7\). 3. **Recognize the geometric series:** \[ \sum_{m=0}^{7} 2^m = 2^8 - 1 = 256 - 1 = 255 \] 4. **Multiply by the constant:** \[ 3 \times 255 = 765 \] **Answer:** \(765\) --- ### **c) \(\sum_{k=7}^{15} \left(-12 + (-2)(-2)\right)\)** 1. **Simplify the expression inside the sum:** \[ -12 + (-2)(-2) = -12 + 4 = -8 \] 2. **Determine the number of terms:** From \(k = 7\) to \(k = 15\), there are \(15 - 7 + 1 = 9\) terms. 3. **Multiply the constant by the number of terms:** \[ 9 \times (-8) = -72 \] **Answer:** \(-72\) --- ### **d) \(\sum_{k=0}^{8} 2 \times 3 \times 3^k\)** 1. **Simplify the constants:** \[ 2 \times 3 \times 3^k = 6 \times 3^k \] 2. **Factor out the constant:** \[ 6 \sum_{k=0}^{8} 3^k \] 3. **Recognize the geometric series:** \[ \sum_{k=0}^{8} 3^k = \frac{3^9 - 1}{3 - 1} = \frac{19683 - 1}{2} = \frac{19682}{2} = 9841 \] 4. **Multiply by the constant:** \[ 6 \times 9841 = 59046 \] **Answer:** \(59,\!046\) --- ### **Summary of Answers:** - **a)** \(144\) - **b)** \(765\) - **c)** \(-72\) - **d)** \(59,\!046\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let's tackle these summations one by one! 1) For the first one (a): \[ \sum^{12} 5 + 2(k-3) \] You would evaluate this from \( k = 1 \) to \( k = 12 \). The first term is constant; thus, that sums up (5 * 12) = 60. The second part, \( 2(k-3) \), can be computed as follows: \[ \sum_{k=1}^{12} 2(k-3) = 2 \sum_{k=1}^{12} (k-3) = 2 \left(\sum_{k=1}^{12} k - \sum_{k=1}^{12} 3\right) \] The first part sums to \( \frac{12(13)}{2} = 78 \), while the second part sums to \( 3 \times 12 = 36 \). Therefore, \[ \sum_{k=1}^{12} (k-3) = 78 - 36 = 42 \Rightarrow 2(42) = 84 \] Adding both parts, \( 60 + 84 = 144 \). 2) For (b): \[ \sum_{k=5}^{12} 3(2)^{k-5} \] Start by factoring out the 3: \[ 3 \sum_{k=5}^{12} (2)^{k-5} = 3 \sum_{j=0}^{7} (2)^{j} \quad \text{(where \( j = k - 5 \))} \] This is a geometric series where \( a = 1 \), \( r = 2 \), and \( n = 8 \): \[ \sum_{j=0}^{7} (2)^{j} = \frac{1(2^{8} - 1)}{2 - 1} = 255 \] Thus, \[ 3 \times 255 = 765 \] 3) For (c): \[ \sum_{k=7}^{15} -12 + (-2)(-2) \] Simplifying the expression \( -12 + 4 = -8 \): This is constant from \( k = 7 \) to \( k = 15 \) (9 terms), so: \[ \sum_{k=7}^{15} -8 = -8 \times 9 = -72 \] 4) For (d): \[ \sum_{k=0}^{8} 2(3)(3)^{k} = 6 \sum_{k=0}^{8} (3)^{k} \] This too is a geometric series with \( a = 1 \), \( r = 3 \), and \( n = 9 \): \[ \sum_{k=0}^{8} (3)^{k} = \frac{1(3^{9} - 1)}{3 - 1} = \frac{19683 - 1}{2} = 9841 \] Thus, \[ 6 \times 9841 = 59046 \] So, we have: a) 144, b) 765, c) -72, d) 59046.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad