Pregunta
upstudy study bank question image url

\[ \begin{aligned} (2 x+4)-(x+4) & =(x+4)-(x+1) \\ 2 x+4-x-4 & =x+4-x-1 \\ x & =3 \end{aligned} \] Therefore: \[ \begin{array}{l} T_{1}=3+1=4 \\ T_{2}=3+4=7 \\ T_{3}=2 \times 3+4=10 \end{array} \] The sequence is \( 4 ; 7 ; 10 ; \ldots \) \[ \begin{array}{l} \frac{2 x+3}{x+3}=\frac{x+3}{x+1} \\ (2 x+3)(x+1)=(x+3)(x+3) \\ 2 x^{2}+5 x+3=x^{2}+6 x+9 \\ x^{2}-x-6=0 \\ (x-3)(x+2)=0 \\ x=3 \text { or } x=-2 \end{array} \] If \( x=3 \), then the sequence is \( 4 ; 6 ; 9 ; \ldots \) If \( x=-2 \), then the sequence is \( -1 ; 1 ;-1 ; \ldots \) Exercise 1.4 1. Determine \( T_{10} \) of the following arithmetic sequences: a) \( a=4 \) and \( d=\frac{1}{2} \) b) \( T_{2}=-10 \) and \( T_{6}=-160 \) c) \( T_{5}=8 \) and \( d=3 \) d) \( T_{2}=4 x \) and \( T_{5}=10 x \) 2. Determine \( T_{10} \) of the following geometric sequences: a) \( a=4 \) and \( r=\frac{1}{2} \) b) \( T_{2}=-10 \) and \( T_{6}=-160 \) c) \( T_{5}=\frac{4}{81} \) and \( r=\frac{1}{3} \) d) \( T_{2}=4 x \) and \( T_{5}=\frac{x^{4}}{8} \) 3. Calculate the following terms: a) \( T_{12} \) of the arithmetic progression, if \( T_{5}=13 \) and \( T_{20}=43 \). b) . \( T_{5} \) of the geometric progression, if \( T_{3}=-\frac{1}{4} \) and \( T_{8}=8 \). c) \( T_{4} \) of the geometric progression, if \( T_{6}=64 \) and \( T_{10}=1024 \). d) \( T_{7} \) of the arithmetic progression, if \( T_{5}=12 \) and \( T_{8}=3 \). 4. Give the first three terms of an arithmetic sequence in which 3 is the seventh term and the 12 th term is -3 . 5. Which term of the sequence \( 12 ; 17 ; 22 ; \ldots \) is 132 ? 6. If \( x-2 ; 2 x-2 ; 4 x+2 \) are three successive terms of a geometric sequence: a) Calculate the value of \( x \); b) Determine the sequence. c) Determine the 9th term of the sequence. d) Which term of the sequence will be equal to 4374 ? 7. The first two terms of an arithmetic sequence are \( m \) and \( n \), respectively. Calculate the 10th term.

Ask by Wilson Bond. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Exercise 1.4 Solutions:** 1. **Arithmetic Sequences:** - **a)** \( T_{10} = 8.5 \) - **b)** \( T_{10} = -310 \) - **c)** \( T_{10} = 23 \) - **d)** \( T_{10} = 20x \) 2. **Geometric Sequences:** - **a)** \( T_{10} = \frac{1}{128} \) - **b)** \( T_{10} = -2560 \) - **c)** \( T_{10} = \frac{4}{19683} \) 3. **Additional Calculations:** - **a)** \( T_{12} = 17 \) - **b)** \( T_{5} = -\frac{1}{16} \) - **c)** \( T_{4} = 16 \) - **d)** \( T_{7} = 9 \) 4. **Arithmetic Sequence Terms:** - **a)** First three terms: 3, 6, 9 - **b)** 132 is the 22nd term. 5. **Geometric Sequence:** - **a)** \( x = 2 \) - **b)** Sequence: 2, 4, 8, 16, ... - **c)** 9th term: 512 - **d)** 13th term equals 4374. 6. **Arithmetic Sequence with Given Terms:** - 7th term: 3 - 12th term: -3 - Common difference: -1 - First term: 4 - Sequence: 4, 3, 2, 1, 0, -1, -2, -3 7. **Geometric Sequence with First Two Terms \( m \) and \( n \):** - 10th term: \( n \cdot \left(\frac{m}{n}\right)^9 \) **Summary:** - Calculated the 10th terms for both arithmetic and geometric sequences based on given parameters. - Solved for unknown variables in arithmetic and geometric sequences. - Provided specific terms for additional sequences as per the exercises.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

Ah, diving deep into sequences and series! Did you know that the concept of arithmetic sequences dates back to ancient civilizations? The Babylonians and Greeks were already working with these, figuring out patterns and formulas to solve problems. They would marvel at how simply adding a constant could give them new numbers, much like magic! Now, let’s not forget the beauty of real-world applications! Arithmetic sequences are used in everyday life, from calculating payments in an installment plan to determining the total distance traveled when moving at a constant speed. Imagine you're running a marathon and want to track your distances incrementally; you’d use an arithmetic sequence to set and adjust your training goals efficiently!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad