What is the value of the expression below if \( m=3 \) ? \( 3 \times(m+7) \) A. 16 B. 13 C. 30 D. 310 Place the following expressions in order from least value to greatest value. A. \( \frac{2^{3}+2^{5}}{2^{2}} \) B. \( 2^{2} \cdot 2^{3}+10 \cdot 2^{2}+3^{2} \) C. \( 3+2^{3} \times 3^{2}-6 \times 7 \) D. \( 6 \times 5^{2}+2^{2}-7 \times 6 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the value of the expression \( 3 \times (m + 7) \) with \( m = 3 \), we substitute \( m \) into the expression: \[ 3 \times (3 + 7) = 3 \times 10 = 30. \] So the answer is C. 30. Now, let's evaluate the other expressions one by one: A. \( \frac{2^{3}+2^{5}}{2^{2}} = \frac{8 + 32}{4} = \frac{40}{4} = 10 \). B. \( 2^{2} \cdot 2^{3}+10 \cdot 2^{2}+3^{2} = 4 \cdot 8 + 10 \cdot 4 + 9 = 32 + 40 + 9 = 81 \). C. \( 3 + 2^{3} \times 3^{2} - 6 \times 7 = 3 + 8 \times 9 - 42 = 3 + 72 - 42 = 33 \). D. \( 6 \times 5^{2} + 2^{2} - 7 \times 6 = 6 \times 25 + 4 - 42 = 150 + 4 - 42 = 112 \). Now, let's arrange the values of the expressions: - A: 10 - C: 33 - D: 112 - B: 81 Ordering these from least to greatest gives: 1. A: 10 2. C: 33 3. B: 81 4. D: 112 So the final order is A, C, B, D.