Pregunta
Find the domain of the function. \( g(x)=\frac{x+7}{x^{2}-16} \) The domain is \( \square \). (Type your answer in interval notation.)
Ask by Erickson Hilton. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The domain is \( (-\infty, -4) \cup (-4, 4) \cup (4, \infty) \).
Solución
To determine the **domain** of the function \( g(x) = \frac{x+7}{x^{2}-16} \), we need to identify all real numbers \( x \) for which the function is defined.
The function \( g(x) \) is a **rational function**, which means it is defined for all real numbers **except** those that make the **denominator** equal to zero (since division by zero is undefined).
1. **Set the denominator equal to zero and solve for \( x \):**
\[
x^{2} - 16 = 0
\]
\[
x^{2} = 16
\]
\[
x = \pm 4
\]
2. **Exclude these values from the domain:**
The function is undefined at \( x = 4 \) and \( x = -4 \).
3. **Express the domain in interval notation:**
\[
(-\infty, -4) \cup (-4, 4) \cup (4, \infty)
\]
**Final Answer:**
The domain is \( (-\infty, -4) \cup (-4, 4) \cup (4, \infty) \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To find the domain of \( g(x)=\frac{x+7}{x^{2}-16} \), we need to set the denominator not equal to zero. The denominator is \( x^2 - 16 = 0 \), which can be factored as \( (x - 4)(x + 4) = 0 \). This gives us the solutions \( x = 4 \) and \( x = -4 \). Thus, the function is undefined at these points. The domain of \( g(x) \) is all real numbers except \( -4 \) and \( 4 \), which in interval notation can be expressed as \( (-\infty, -4) \cup (-4, 4) \cup (4, \infty) \). The domain is \( (-\infty, -4) \cup (-4, 4) \cup (4, \infty) \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium