Pregunta
upstudy study bank question image url

\[ l(x)=\log _{4}(x+3)-\log _{4}(x-2) \] (a) Write down \( D_{f} \) and solve the inequality \( f(x) \leq 0 \) (b) Solve the equation \( g(x)=-4 \) (c) Solve the equation \( 4^{h(x)}=8 \) (d) Write down \( D_{l} \) and solve the inequality \( l(x)=\frac{1}{2} \)

Ask by Parry Mcfarlane. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- (a) Domain \( D_f = (2, \infty) \). No solutions for \( l(x) \leq 0 \). - (b) No solutions for \( g(x) = -4 \). - (c) \( h(x) = \frac{3}{2} \). - (d) Domain \( D_l = (2, \infty) \). Solution \( x = 7 \).

Solución

Let's solve the problem step by step. ### Part (a): Find \( D_f \) and solve the inequality \( f(x) \leq 0 \) The function given is: \[ l(x) = \log_{4}(x+3) - \log_{4}(x-2) \] **Step 1: Determine the domain \( D_f \)** The logarithmic function is defined only for positive arguments. Therefore, we need: 1. \( x + 3 > 0 \) → \( x > -3 \) 2. \( x - 2 > 0 \) → \( x > 2 \) The more restrictive condition is \( x > 2 \). Thus, the domain is: \[ D_f = (2, \infty) \] **Step 2: Solve the inequality \( l(x) \leq 0 \)** Using the properties of logarithms, we can rewrite the expression: \[ l(x) = \log_{4}\left(\frac{x+3}{x-2}\right) \] We need to solve: \[ \log_{4}\left(\frac{x+3}{x-2}\right) \leq 0 \] This implies: \[ \frac{x+3}{x-2} \leq 1 \] **Step 3: Solve the inequality** Cross-multiplying (valid since \( x > 2 \)): \[ x + 3 \leq x - 2 \] This simplifies to: \[ 3 \leq -2 \] This is never true, meaning there are no solutions in the domain \( D_f \). ### Part (b): Solve the equation \( g(x) = -4 \) Since \( g(x) \) is not defined in the problem, we will assume \( g(x) = l(x) \). Thus, we need to solve: \[ l(x) = -4 \] Using the logarithmic form: \[ \log_{4}\left(\frac{x+3}{x-2}\right) = -4 \] This implies: \[ \frac{x+3}{x-2} = 4^{-4} = \frac{1}{256} \] **Step 4: Cross-multiply and solve** Cross-multiplying gives: \[ 256(x + 3) = x - 2 \] Expanding and rearranging: \[ 256x + 768 = x - 2 \] \[ 255x = -770 \] \[ x = -\frac{770}{255} = -\frac{154}{51} \] Since \( -\frac{154}{51} \) is not in the domain \( D_f \), there are no solutions. ### Part (c): Solve the equation \( 4^{h(x)} = 8 \) We can rewrite \( 8 \) as \( 4^{3/2} \): \[ 4^{h(x)} = 4^{3/2} \] This implies: \[ h(x) = \frac{3}{2} \] ### Part (d): Write down \( D_l \) and solve the inequality \( l(x) = \frac{1}{2} \) **Step 1: Determine the domain \( D_l \)** The domain \( D_l \) is the same as \( D_f \): \[ D_l = (2, \infty) \] **Step 2: Solve the equation \( l(x) = \frac{1}{2} \)** Using the logarithmic form: \[ \log_{4}\left(\frac{x+3}{x-2}\right) = \frac{1}{2} \] This implies: \[ \frac{x+3}{x-2} = 4^{1/2} = 2 \] **Step 3: Cross-multiply and solve** Cross-multiplying gives: \[ x + 3 = 2(x - 2) \] Expanding and rearranging: \[ x + 3 = 2x - 4 \] \[ 3 + 4 = 2x - x \] \[ x = 7 \] Since \( 7 \) is in the domain \( D_l \), the solution is: \[ x = 7 \] ### Summary of Solutions: - (a) \( D_f = (2, \infty) \), no solutions for \( l(x) \leq 0 \). - (b) No solutions for \( g(x) = -4 \). - (c) \( h(x) = \frac{3}{2} \). - (d) \( D_l = (2, \infty) \), solution \( x = 7 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the given problem, we will break it down into parts. ### Part (a) First, let's determine the domain \( D_{f} \) for the function \( f(x) = \log_{4}(x+3) - \log_{4}(x-2) \). The logarithm functions are defined only for positive arguments, which gives us the conditions: 1. \( x + 3 > 0 \) → \( x > -3 \) 2. \( x - 2 > 0 \) → \( x > 2 \) Therefore, the domain \( D_{f} \) is \( x > 2 \). Now, let's solve the inequality \( f(x) \leq 0 \). We can apply the properties of logarithms: \[ \log_{4}(x + 3) - \log_{4}(x - 2) = \log_{4}\left(\frac{x + 3}{x - 2}\right) \leq 0 \] This inequality implies: \[ \frac{x + 3}{x - 2} \leq 1 \] Multiplying both sides by \( x - 2 \) (valid since \( x > 2 \) ensures \( x - 2 > 0 \)): \[ x + 3 \leq x - 2 \] This simplifies to \( 3 \leq -2 \), which is never true. Thus, there are no solutions for \( f(x) \leq 0 \) in the domain \( D_{f} \). ### Part (b) Now, to solve the equation \( g(x) = -4 \), we first note that \( g(x) \) must be defined. However, you didn't provide the definition of \( g(x) \). Assuming \( g(x) \) is another logarithmic function related to \( f(x) \), we might approach it in a similar manner, but we need more information to continue. ### Part (c) To solve \( 4^{h(x)} = 8 \), we can express 8 as a power of 4: \[ 8 = 4^{3/2} \] Thus, we set \( h(x) = \frac{3}{2} \). ### Part (d) Next, we address the function \( l(x) = \log_{4}(x + 3) - \log_{4}(x - 2) \) again. The domain \( D_{l} \) is the same as \( D_{f} \), so \( D_{l} = (2, \infty) \). Now, we solve the equation \( l(x) = \frac{1}{2} \): \[ \log_{4}\left(\frac{x + 3}{x - 2}\right) = \frac{1}{2} \] This can be rewritten in exponential form: \[ \frac{x + 3}{x - 2} = 4^{1/2} = 2 \] Cross-multiplying gives us: \[ x + 3 = 2(x - 2) \] Expanding and simplifying: \[ x + 3 = 2x - 4 \] Thus, \[ 3 + 4 = 2x - x \\ 7 = x \\ \] The solution is \( x = 7 \). We should check if it lies within the domain \( D_{l} = (2, \infty) \). Yes, it does! ### Summary of Solutions: - (a) \( D_f = (2, \infty) \) and no solutions for \( f(x) \leq 0 \). - (b) More information needed for \( g(x) \). - (c) \( h(x) = \frac{3}{2} \). - (d) \( x = 7 \) is the solution for \( l(x) = \frac{1}{2} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad