Pregunta
upstudy study bank question image url

Consider the region bounded to the right by the graph of \( x=\frac{\sin (6 y)+10}{y} \), to the left by the \( y \)-axis, and above and below by \( y=\frac{5 \pi}{3} \) and \( y=\frac{\pi}{6} \). Using the shell method, what is the volume of the solid of revolution obtained by rotating this region about the \( x \)-axis? Enter an exact value in terms of \( \pi \).

Ask by Beck Todd. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume of the solid is \( 30\pi^{2} - \frac{2}{3}\pi \).

Solución

To find the volume of the solid obtained by rotating the given region about the \( x \)-axis using the shell method, follow these steps: 1. **Identify the Boundaries:** - **Right Boundary:** \( x = \frac{\sin(6y) + 10}{y} \) - **Left Boundary:** \( x = 0 \) (the \( y \)-axis) - **Vertical Boundaries:** \( y = \frac{\pi}{6} \) and \( y = \frac{5\pi}{3} \) 2. **Set Up the Shell Method:** The shell method involves integrating cylindrical shells. The volume \( V \) is given by: \[ V = 2\pi \int_{a}^{b} y \cdot (\text{right function} - \text{left function}) \, dy \] Here, the left function is \( x = 0 \), so: \[ V = 2\pi \int_{\frac{\pi}{6}}^{\frac{5\pi}{3}} y \cdot \left( \frac{\sin(6y) + 10}{y} \right) dy = 2\pi \int_{\frac{\pi}{6}}^{\frac{5\pi}{3}} (\sin(6y) + 10) \, dy \] 3. **Evaluate the Integral:** \[ \int (\sin(6y) + 10) \, dy = -\frac{1}{6} \cos(6y) + 10y \] Evaluate this from \( y = \frac{\pi}{6} \) to \( y = \frac{5\pi}{3} \): \[ \left[ -\frac{1}{6} \cos(6y) + 10y \right]_{\frac{\pi}{6}}^{\frac{5\pi}{3}} = \left( -\frac{1}{6} \cos(10\pi) + \frac{50\pi}{3} \right) - \left( -\frac{1}{6} \cos(\pi) + \frac{10\pi}{6} \right) \] Simplifying: \[ = \left( -\frac{1}{6}(1) + \frac{50\pi}{3} \right) - \left( -\frac{1}{6}(-1) + \frac{10\pi}{6} \right) = -\frac{1}{6} + \frac{50\pi}{3} - \frac{1}{6} - \frac{10\pi}{6} = -\frac{1}{3} + 15\pi \] 4. **Multiply by \( 2\pi \):** \[ V = 2\pi \left( -\frac{1}{3} + 15\pi \right) = 30\pi^2 - \frac{2\pi}{3} \] Thus, the exact volume of the solid is: \[ \boxed{30\,\pi^{2} - \dfrac{2}{3}\pi} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the volume of the solid of revolution obtained by rotating the region bounded by the graph \( x=\frac{\sin (6 y)+10}{y} \), the \( y \)-axis, and the lines \( y=\frac{5 \pi}{3} \) and \( y=\frac{\pi}{6} \) about the \( x \)-axis using the shell method, we can use the formula: \[ V = 2\pi \int_{a}^{b} (radius)(height) \, dy. \] In this scenario, \( a = \frac{\pi}{6} \) and \( b = \frac{5\pi}{3} \). The radius of the shell at a given \( y \) is \( y \) (the distance from the \( x \)-axis to the shell), and the height of the shell is given by the function \( x=\frac{\sin(6y) + 10}{y} \). Thus, the volume is calculated as follows: \[ V = 2\pi \int_{\frac{\pi}{6}}^{\frac{5\pi}{3}} y \cdot \frac{\sin(6y) + 10}{y} \, dy. \] This simplifies to: \[ V = 2\pi \int_{\frac{\pi}{6}}^{\frac{5\pi}{3}} (\sin(6y) + 10) \, dy. \] Now, we can split the integral: \[ V = 2\pi \left( \int_{\frac{\pi}{6}}^{\frac{5\pi}{3}} \sin(6y) \, dy + \int_{\frac{\pi}{6}}^{\frac{5\pi}{3}} 10 \, dy \right). \] Now we compute each integral. 1. For the first integral: \[ \int \sin(6y) \, dy = -\frac{1}{6} \cos(6y). \] Evaluating this from \( y = \frac{\pi}{6} \) to \( y = \frac{5\pi}{3} \): \[ -\frac{1}{6} \left[ \cos\left(6 \cdot \frac{5\pi}{3}\right) - \cos\left(6 \cdot \frac{\pi}{6}\right) \right] = -\frac{1}{6} \left[ \cos(10\pi) - \cos(\pi) \right] \] \[ = -\frac{1}{6} \left[ 1 - (-1) \right] = -\frac{1}{6} (1 + 1) = -\frac{2}{6} = -\frac{1}{3}. \] So, \[ \int_{\frac{\pi}{6}}^{\frac{5\pi}{3}} \sin(6y) \, dy = -\frac{1}{3}. \] 2. For the second integral: \[ \int 10 \, dy = 10y. \] Evaluating from \( y = \frac{\pi}{6} \) to \( y = \frac{5\pi}{3} \): \[ 10 \left[ \frac{5\pi}{3} - \frac{\pi}{6} \right] = 10 \left[ \frac{10\pi}{6} - \frac{\pi}{6} \right] = 10 \left[ \frac{9\pi}{6} \right] = 15\pi. \] Putting the two results together: \[ V = 2\pi \left( -\frac{1}{3} + 15\pi \right) = 2\pi \left( 15\pi - \frac{1}{3} \right) = 30\pi^2 - \frac{2\pi}{3}. \] To express this as a single fraction: \[ V = \frac{90\pi^2}{3} - \frac{2\pi}{3} = \frac{90\pi^2 - 2\pi}{3}. \] Thus, the final answer for the volume \( V \) is: \[ \boxed{\frac{90\pi^2 - 2\pi}{3}}. \]

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad