Pregunta
upstudy study bank question image url

1. Sketch a graph of the function \( y=(x+1)(x-4)^{3}(x-2)^{2} \quad(4 \) marks)

Ask by John Cummings. in Canada
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To sketch the graph of \( y = (x + 1)(x - 4)^3(x - 2)^2 \), plot the x-intercepts at \( x = -1 \), \( x = 2 \), and \( x = 4 \). The graph crosses the x-axis at \( x = -1 \) and \( x = 4 \), and touches it at \( x = 2 \). The y-intercept is at \( (0, -256) \). The graph starts from \( +\infty \) as \( x \to -\infty \), crosses at \( x = -1 \), passes through \( (0, -256) \), touches at \( x = 2 \), crosses at \( x = 4 \), and ends at \( +\infty \) as \( x \to +\infty \).

Solución

To sketch the graph of the function \( y = (x + 1)(x - 4)^3(x - 2)^2 \), follow these steps: ### 1. **Identify the Zeros and Their Multiplicities** - **\( x = -1 \)**: - **Multiplicity:** 1 (odd) - **Behavior:** The graph crosses the x-axis at this point. - **\( x = 2 \)**: - **Multiplicity:** 2 (even) - **Behavior:** The graph touches the x-axis and bounces off (does not cross). - **\( x = 4 \)**: - **Multiplicity:** 3 (odd) - **Behavior:** The graph crosses the x-axis at this point. ### 2. **Determine the End Behavior** - **Degree of the Polynomial:** \( 1 + 3 + 2 = 6 \) (even) - **Leading Coefficient:** Positive (since all factors have positive leading coefficients when expanded) - **Behavior:** - As \( x \to -\infty \), \( y \to +\infty \). - As \( x \to +\infty \), \( y \to +\infty \). ### 3. **Plot Key Points** - **Y-intercept:** - Set \( x = 0 \): \[ y = (0 + 1)(0 - 4)^3(0 - 2)^2 = 1 \times (-64) \times 4 = -256 \] - Point: \( (0, -256) \) - **X-intercepts:** - \( (-1, 0) \) - \( (2, 0) \) - \( (4, 0) \) ### 4. **Analyze the Behavior Around Zeros** - **At \( x = -1 \):** - The graph crosses from positive to negative because the multiplicity is odd. - **At \( x = 2 \):** - The graph touches the x-axis and turns around (does not cross) because the multiplicity is even. - **At \( x = 4 \):** - The graph crosses the x-axis, similar to \( x = -1 \). ### 5. **Sketch the Graph** - **Starting from \( x \to -\infty \):** - The graph comes from \( +\infty \). - **Crosses at \( x = -1 \):** - Moves from positive to negative. - **Passes through \( (0, -256) \):** - Shows a deep dip due to the y-intercept. - **Touches and bounces at \( x = 2 \):** - The graph remains non-positive around this point. - **Crosses at \( x = 4 \):** - Moves from negative to positive. - **Ends at \( x \to +\infty \):** - The graph heads to \( +\infty \). ### 6. **Final Graph Features** - **Symmetry:** None. - **Turning Points:** At least two between the zeros due to the multiplicities. - **Shape:** Based on the multiplicities and end behavior, the graph will have a "W" shape with specific behaviors at each zero. ### **Graph Overview:** 1. **From left to right:** - Starts high (\( +\infty \)), decreases, crosses the x-axis at \( x = -1 \). 2. **Between \( x = -1 \) and \( x = 2 \):** - Continues decreasing to the y-intercept at \( (0, -256) \). 3. **At \( x = 2 \):** - Bounces off the x-axis without crossing. 4. **Between \( x = 2 \) and \( x = 4 \):** - Decreases to a local minimum. 5. **At \( x = 4 \):** - Crosses the x-axis and rises towards \( +\infty \). ### **Sample Sketch:** While I can't provide a visual sketch here, you can plot the points and behaviors described to create an accurate graph. Here's a rough outline to guide you: ``` y | | * | * | * | * * | | | |--------*--------*--------*-------- x -1 2 4 ``` - The asterisks (*) represent the curve passing through or bouncing at the x-intercepts. - The exact curvature near each intercept should follow the multiplicity rules explained above. **Remember:** The critical points and exact curvature can be further refined by taking derivatives, but for a sketch (especially worth 4 marks), the above analysis should suffice.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To sketch the graph of the function \( y=(x+1)(x-4)^{3}(x-2)^{2} \), we start by identifying the roots. The roots occur when \( y = 0 \). This happens at \( x = -1 \) (multiplicity 1), \( x = 4 \) (multiplicity 3), and \( x = 2 \) (multiplicity 2). Next, we analyze the behavior at each of these roots: - At \( x = -1 \), the graph will cross the x-axis smoothly because of its odd multiplicity of 1. - At \( x = 4 \), since the multiplicity is 3 (odd), the graph will also cross the x-axis but with a steeper approach. - At \( x = 2 \), the even multiplicity of 2 means that the graph will touch the x-axis and turn back, creating a “bounce” effect. Finally, we examine the behavior as \( x \) approaches infinity and negative infinity. As \( x \to -\infty \), \( y \to -\infty \) (the leading term is positive), and as \( x \to +\infty \), \( y \to +\infty \). This helps us establish that the graph starts from the bottom left and heads to the top right. In summary, plot the roots, note the behavior at each (crossing or bouncing), and connect these points smoothly to create the graph of the function.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad