Pregunta
upstudy study bank question image url

Consider the following. \[ f(x)=\ln (x)+5 \] (a) What is the domain of \( f \) ? (Enter your answer using interval notation.) \( (0, \infty) \) What is the range of \( f \) ? (Enter your answer using interval notation.) (b) What is the \( x \)-intercept of the graph of \( f \) ? (- \( x=0.0067 \) (c) Sketch the graph of \( f \).

Ask by Blake Floyd. in the United States
Feb 13,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Domain: (0, ∞) Range: (–∞, ∞) x-intercept: (0.0067, 0) Graph: The function f(x) = ln(x) + 5 is defined for x > 0, has a range of all real numbers, and crosses the x-axis at approximately (0.0067, 0). The graph increases slowly for x > 1, passes through (1, 5), and approaches negative infinity as x approaches 0 from the right.

Solución

We are given the function f(x) = ln(x) + 5. (a) Domain and Range • Domain: The natural logarithm ln(x) is defined only for x > 0. Hence, the domain is (0, ∞). • Range: The function ln(x) has a range of (–∞, ∞) and adding 5 shifts the entire graph vertically by 5. Thus, the range remains (–∞, ∞). (b) x-intercept To find the x-intercept, set f(x) = 0:   ln(x) + 5 = 0  →  ln(x) = –5  →  x = e^(–5). Using a calculator, e^(–5) ≈ 0.0067, so the x-intercept is approximately (0.0067, 0). (c) Sketching the Graph To sketch the graph of f(x) = ln(x) + 5, note the following: 1. Basic Logarithm: The graph of y = ln(x) is defined for x > 0, passes through (1, 0), and has a vertical asymptote at x = 0. It increases slowly for x > 1. 2. Vertical Shift: The +5 moves every point on y = ln(x) up by 5. Therefore, the graph now passes through (1, 5) instead of (1, 0). 3. x-intercept: As calculated, the graph crosses the x-axis at (e^(–5), 0) ≈ (0.0067, 0). 4. y-intercept: There is no y-intercept because the function is not defined at x = 0. 5. Asymptote: The vertical asymptote remains x = 0. Steps to sketch:  • Draw a vertical dashed line at x = 0 for the asymptote.  • Plot the point (e^(–5) ≈ 0.0067, 0) for the x-intercept.  • Plot the point (1, 5).  • Sketch a smooth curve that increases slowly to the right, passes through (1, 5), and continues to rise gradually.  • As x approaches 0 (from the right), note that f(x) goes to –∞ (the graph dives downward near the asymptote).  • As x increases, the graph continues to rise, but at a decreasing rate compared to linear functions. The final answers: Domain: (0, ∞) Range: (–∞, ∞) x-intercept: (e^(–5), 0) or approximately (0.0067, 0) This completes the analysis and sketch of the function f(x) = ln(x) + 5.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The range of \( f(x) = \ln(x) + 5 \) is all real numbers greater than \( 5 \). As \( x \) approaches \( 0 \) from the right, \( f(x) \) trends towards \( -\infty \), while as \( x \) increases, \( f(x) \) also increases towards \( +\infty \). Therefore, the range is \( (-\infty, 5) \). The \( x \)-intercept occurs where \( f(x) = 0 \). Setting the equation \( \ln(x) + 5 = 0 \) gives you \( \ln(x) = -5 \), which simplifies to \( x = e^{-5} \approx 0.0067 \). So, the \( x \)-intercept is at approximately \( (-x = 0.0067) \). As for the sketch of the graph, it features a continuously increasing curve that approaches \( -\infty \) as \( x \) approaches \( 0 \) and rises to \( +\infty \) as \( x \) increases, with a horizontal asymptote at \( y = 5 \).

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad