Pregunta
upstudy study bank question image url

A graphing calculator is recommended. Compare the functions \( f(x)=x^{10} \) and \( g(x)=e^{x} \) by graphing both functions in several viewing rectangles. When does the graph of \( g \) finally surpass the graph of \( f ? \) (Round your answer to one decimal place.) \( x=15.2 \)

Ask by Weaver Wang. in the United States
Feb 13,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The graph of \( g(x) = e^{x} \) surpasses \( f(x) = x^{10} \) at \( x = 15.2 \).

Solución

We want to know when the exponential function g(x) = eˣ overtakes the power function f(x) = x¹⁰. In other words, we seek the x-value at which   eˣ = x¹⁰. While you could explore the inequality eˣ > x¹⁰ using logarithms (by taking the natural log: x > 10·ln(x)), it turns out that solving this equation exactly is not feasible by algebraic manipulations. Instead, a graphing calculator or numerical methods are preferred. By graphing f and g in several viewing rectangles, it becomes clear that the curves cross somewhere near x = 15.2. For x-values less than about 15.2, x¹⁰ is larger than eˣ, while for x-values greater than 15.2, eˣ finally surpasses x¹⁰. Thus, rounded to one decimal place, the graph of g(x) = eˣ finally exceeds that of f(x) = x¹⁰ at x = 15.2.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

When you graph \( f(x) = x^{10} \) and \( g(x) = e^{x} \), you might notice that for small values of \( x \), \( f \) is greater than \( g \). However, as \( x \) increases, \( g \) starts to climb rapidly. At around \( x = 15.2 \), \( g \) finally goes above \( f \). This demonstrates the powerful nature of exponential growth compared to polynomial growth, showcasing how quickly \( e^{x} \) can outpace even a high-degree polynomial. It's pretty fascinating to visualize this intersection on the graph! If you plot both functions, you may see \( g \) gradually overtaking \( f \) starting at some point and continuing to rise steeply. This can be a great exercise to understand the differences between linear, polynomial, and exponential growth rates in mathematics.

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad