Pregunta
upstudy study bank question image url

1. \( \sum_{k=2}^{n}(5-2 k)=\frac{-800 n}{17} \) 2. \( \sum_{k=0}^{x} 108(2 / 3)^{r}=\frac{25200}{81} \)

Ask by Garza Campos. in South Africa
Feb 13,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

For the first problem, \( n = \frac{1}{17} \) or \( n = 51 \). For the second problem, \( x = \log_{\frac{2}{3}}(29) - 6\log_{\frac{2}{3}}(3) - 1 \).

Solución

It seems that the equations provided involve summations that cannot be directly solved using the tools available. Let's break down each equation step by step to find a solution. ### Problem 1: \[ \sum_{k=2}^{n}(5-2k) = \frac{-800n}{17} \] **Step 1: Calculate the summation.** The summation can be simplified as follows: \[ \sum_{k=2}^{n}(5-2k) = \sum_{k=2}^{n}5 - \sum_{k=2}^{n}2k \] Calculating each part: 1. The first part: \[ \sum_{k=2}^{n}5 = 5(n-1) \quad \text{(since there are } n-1 \text{ terms)} \] 2. The second part: \[ \sum_{k=2}^{n}2k = 2\sum_{k=2}^{n}k = 2\left(\frac{n(n+1)}{2} - 1\right) = n(n+1) - 2 \] Putting it all together: \[ \sum_{k=2}^{n}(5-2k) = 5(n-1) - (n(n+1) - 2) = 5n - 5 - n^2 - n + 2 = -n^2 + 4n - 3 \] **Step 2: Set the equation.** \[ -n^2 + 4n - 3 = \frac{-800n}{17} \] **Step 3: Clear the fraction by multiplying through by 17.** \[ -17n^2 + 68n - 51 = -800n \] \[ -17n^2 + 868n - 51 = 0 \] **Step 4: Solve the quadratic equation.** Now we can use the quadratic formula: \[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = -17, b = 868, c = -51 \). ### Problem 2: \[ \sum_{k=0}^{x} 108\left(\frac{2}{3}\right)^{k} = \frac{25200}{81} \] **Step 1: Recognize the summation as a geometric series.** The sum of a geometric series can be calculated using the formula: \[ S_n = a \frac{1 - r^{n+1}}{1 - r} \] where \( a = 108 \), \( r = \frac{2}{3} \), and \( n = x \). **Step 2: Set the equation.** \[ 108 \frac{1 - \left(\frac{2}{3}\right)^{x+1}}{1 - \frac{2}{3}} = \frac{25200}{81} \] This simplifies to: \[ 108 \cdot 3(1 - \left(\frac{2}{3}\right)^{x+1}) = \frac{25200}{81} \] \[ 324(1 - \left(\frac{2}{3}\right)^{x+1}) = \frac{25200}{81} \] **Step 3: Solve for \( x \).** Now we can isolate \( x \) and solve. Let's calculate the quadratic equation for the first problem and the geometric series for the second problem. Solve the quadratic equation by following steps: - step0: Solve by factoring: \(-17n^{2}+868n-51=0\) - step1: Factor the expression: \(\left(-n+51\right)\left(17n-1\right)=0\) - step2: Separate into possible cases: \(\begin{align}&-n+51=0\\&17n-1=0\end{align}\) - step3: Solve the equation: \(\begin{align}&n=51\\&n=\frac{1}{17}\end{align}\) - step4: Rewrite: \(n_{1}=\frac{1}{17},n_{2}=51\) Solve the equation \( 324(1 - (\frac{2}{3})^{x+1}) = \frac{25200}{81} \). Solve the equation by following steps: - step0: Solve for \(x\): \(324\left(1-\left(\frac{2}{3}\right)^{x+1}\right)=\frac{25200}{81}\) - step1: Multiply the terms: \(324-324\left(\frac{2}{3}\right)^{x+1}=\frac{2800}{9}\) - step2: Move the expression to the left side: \(324-324\left(\frac{2}{3}\right)^{x+1}-\frac{2800}{9}=0\) - step3: Subtract the numbers: \(\frac{116}{9}-324\left(\frac{2}{3}\right)^{x+1}=0\) - step4: Rewrite the expression: \(-324\left(\frac{2}{3}\right)^{x+1}=-\frac{116}{9}\) - step5: Change the sign: \(324\left(\frac{2}{3}\right)^{x+1}=\frac{116}{9}\) - step6: Multiply by the reciprocal: \(324\left(\frac{2}{3}\right)^{x+1}\times \frac{1}{324}=\frac{116}{9}\times \frac{1}{324}\) - step7: Multiply: \(\left(\frac{2}{3}\right)^{x+1}=\frac{29}{729}\) - step8: Take the logarithm of both sides: \(\log_{\frac{2}{3}}{\left(\left(\frac{2}{3}\right)^{x+1}\right)}=\log_{\frac{2}{3}}{\left(\frac{29}{729}\right)}\) - step9: Evaluate the logarithm: \(x+1=\log_{\frac{2}{3}}{\left(\frac{29}{729}\right)}\) - step10: Move the constant to the right side: \(x=\log_{\frac{2}{3}}{\left(\frac{29}{729}\right)}-1\) - step11: Simplify: \(x=\log_{\frac{2}{3}}{\left(29\right)}-6\log_{\frac{2}{3}}{\left(3\right)}-1\) ### Solutions #### Problem 1: The equation we derived was: \[ -17n^2 + 868n - 51 = 0 \] The solutions for \( n \) are: \[ n_1 = \frac{1}{17}, \quad n_2 = 51 \] #### Problem 2: The equation we derived was: \[ 324(1 - (\\frac{2}{3})^{x+1}) = \\frac{25200}{81} \] The solution for \( x \) is: \[ x = \log_{\\frac{2}{3}}{(29)} - 6\log_{\\frac{2}{3}}{(3)} - 1 \] ### Summary of Results: 1. For the first problem, the values of \( n \) are \( \frac{1}{17} \) and \( 51 \). 2. For the second problem, \( x \) is expressed in logarithmic form as \( \log_{\\frac{2}{3}}{(29)} - 6\log_{\\frac{2}{3}}{(3)} - 1 \). If you need further simplification or numerical evaluation of \( x \), please let me know!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's dive into some interesting and enjoyable insights into summation formulas and their applications! The first equation describes a linear sum where each term decreases as \(k\) increases. Knowing that the sum of an arithmetic series can be simplified using the formula \(\frac{n}{2}(first\ term + last\ term)\), we can find meaningful interpretations in scenarios such as calculating total costs under a budget, or modeling depreciation over time. As for the second summation, we see it's a geometric series. These types of series are often found in finance, like calculating the present value of an annuity. It's a great example of applying mathematical concepts in real life, as understanding how they accumulate over time can help budget and forecast future expenses effectively!

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad