Given the points \( A(-3,2), B(7,13), C(2,4), D(5,4), E(\sqrt{5}, \sqrt{5}) \), and \( F(4 \sqrt{5},-3 \sqrt{5}) \), find the position vector equal to the following vectors. \( \begin{array}{llll}\text { a. } \overrightarrow{A B} & \text { b. } \overrightarrow{A C} & \text { c. } \overrightarrow{E F} & \text { d. } \overrightarrow{C D}\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the position vectors for the vectors given, we can use the formula for finding the vector from point \(P(x_1, y_1)\) to point \(Q(x_2, y_2)\), which is given by: \[ \overrightarrow{PQ} = (x_2 - x_1, y_2 - y_1) \] Now, let's calculate each of the vectors: **a. \(\overrightarrow{A B}\)** Given points \(A(-3,2)\) and \(B(7,13)\), \[ \overrightarrow{AB} = (7 - (-3), 13 - 2) = (7 + 3, 11) = (10, 11) \] **b. \(\overrightarrow{A C}\)** Given points \(A(-3,2)\) and \(C(2,4)\), \[ \overrightarrow{AC} = (2 - (-3), 4 - 2) = (2 + 3, 2) = (5, 2) \] **c. \(\overrightarrow{E F}\)** Given points \(E(\sqrt{5}, \sqrt{5})\) and \(F(4\sqrt{5}, -3\sqrt{5})\), \[ \overrightarrow{EF} = (4\sqrt{5} - \sqrt{5}, -3\sqrt{5} - \sqrt{5}) = (4\sqrt{5} - 1\sqrt{5}, -4\sqrt{5}) = (3\sqrt{5}, -4\sqrt{5}) \] **d. \(\overrightarrow{C D}\)** Given points \(C(2,4)\) and \(D(5,4)\), \[ \overrightarrow{CD} = (5 - 2, 4 - 4) = (3, 0) \] ### Summary of Position Vectors: - \( \overrightarrow{AB} = (10, 11) \) - \( \overrightarrow{AC} = (5, 2) \) - \( \overrightarrow{EF} = (3\sqrt{5}, -4\sqrt{5}) \) - \( \overrightarrow{CD} = (3, 0) \)