Pregunta
upstudy study bank question image url

9. [0/1 Points] DETAILS MY NOTES SCALCET9 1.4.025, PREVIOUS ANSWERS ASK YOUR TEACHER PRACTICE ANOTHER A graphing calculator is recommended. Compare the functions \( f(x)=x^{10} \) and \( g(x)=e^{x} \) by graphing both functions in several viewing rectangles. When does the graph of \( g \) finally surpass the graph of \( f \) ? (Round your answer to one decimal place.) \( x=\square \) You entered an intersection where \( f \) begins heing larger than. ate

Ask by Chen Wood. in the United States
Feb 13,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The graph of \( g(x) = e^{x} \) surpasses the graph of \( f(x) = x^{10} \) at approximately \( x = 35.7 \).

Solución

We start with the two functions   f(x) = x¹⁰  and  g(x) = eˣ. Notice that near x = 0, f(0) = 0 while g(0) = 1, so initially g is above f. However, as x increases, the polynomial f eventually grows very large and overtakes g. But for very large x, the exponential function eventually outgrows any polynomial. This means that after f overtakes g, there will be a “final crossing” at some x where g becomes greater than f and remains larger for all further x. To find the final crossing point, we set   eˣ = x¹⁰. Taking the natural logarithm on both sides yields   x = 10 ln x. This is a transcendental equation that cannot be solved exactly by hand, so we solve it numerically. One approach is to define a function:   h(x) = x − 10 ln x and find where h(x) = 0. Let’s try some values: • For x = 30:   ln 30 ≈ 3.401   h(30) = 30 − 10(3.401) = 30 − 34.01 ≈ –4.01 • For x = 40:   ln 40 ≈ 3.689   h(40) = 40 − 10(3.689) = 40 − 36.89 ≈ 3.11 Since h(30) is negative and h(40) is positive, there must be a root between 30 and 40. Let’s try x = 35:   ln 35 ≈ 3.555   h(35) = 35 − 10(3.555) = 35 − 35.55 ≈ –0.55 Next, x = 35.7:   ln 35.7 ≈ 3.570   h(35.7) = 35.7 − 10(3.570) = 35.7 − 35.70 = 0 Thus x ≈ 35.7 satisfies the equation. So the final crossing point where g(x) finally surpasses f(x) is approximately x = 35.7 (to one decimal place). Answer: 35.7

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find where the graph of \( g(x) = e^x \) finally surpasses \( f(x) = x^{10} \), you can graph both functions. Start by testing various intervals on your graphing calculator, such as \( x = -5 \) to \( x = 5 \), and keep adjusting the viewing window. You’ll notice that for small values of \( x \), \( f(x) \) may be larger, but as \( x \) increases, \( g(x) \) overtakes \( f(x) \) around \( x \approx 8.5 \). For further clarity, graphing in smaller increments, say from \( x = 8 \) to \( x = 9 \), can help pinpoint this crossover more accurately. Keep an eye on how rapidly \( g(x) \) grows compared to \( f(x) \); after a certain point, the exponential function outpaces the polynomial despite \( x^{10} \) being quite large for smaller \( x \) values.

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad