14. [-/1 Points] DETAILS MY NOTES SCALCET9 A.D.070. Find all values of \( x \) in the interval \( [0,2 \pi] \) that satisfy the equation. (Enter your answers as a comma-separated list.) \[ 16 \cos (x)+8 \sin (2 x)=0 \] \( x=\square \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
![](/pmw/light_bulb.png?etag=525fd69ac661e11754e2fc9f1b18a4ee)
![](/pmw/spiral_notepad.png?etag=abe3906b7558c543a7b30ba53a3b5a5b)
Extra Insights
To solve the equation \( 16 \cos(x) + 8 \sin(2x) = 0 \), we can start by using the double angle identity for sine, which states that \( \sin(2x) = 2 \sin(x) \cos(x) \). This allows us to rewrite the equation as: \[ 16 \cos(x) + 8(2 \sin(x) \cos(x)) = 0 \] This simplifies to: \[ 16 \cos(x) + 16 \sin(x) \cos(x) = 0 \] Factoring out \( 16 \cos(x) \), we get: \[ 16 \cos(x) (1 + \sin(x)) = 0 \] Setting each factor to zero gives us two cases: 1. \( \cos(x) = 0 \) 2. \( 1 + \sin(x) = 0 \) (which simplifies to \( \sin(x) = -1 \)) For \( \cos(x) = 0 \) in the interval \( [0, 2\pi] \), the solutions are: \[ x = \frac{\pi}{2}, \frac{3\pi}{2} \] For \( \sin(x) = -1 \) in the interval \( [0, 2\pi] \), the solution is: \[ x = \frac{3\pi}{2} \] Now, combining the solutions, we have: \[ x = \frac{\pi}{2}, \frac{3\pi}{2} \] So, the final answer is: \[ x = \frac{\pi}{2}, \frac{3\pi}{2} \]
![](/pmw/img-try-permium.webp)