\( \mid \leftarrow \) Determine whether Rolle's Theorem applies to the given function on the given interval. If \[ f(x)=\cos 7 x ;\left[\frac{\pi}{14}, \frac{3 \pi}{14}\right] \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
Rolle's Theorem states that if a function is continuous on a closed interval \([a, b]\), differentiable on the open interval \((a, b)\), and \(f(a) = f(b)\), then there exists at least one \(c\) in \((a, b)\) such that \(f'(c) = 0\). For the function \(f(x) = \cos(7x)\), it is continuous and differentiable everywhere. Evaluating the endpoints: \[ f\left(\frac{\pi}{14}\right) = \cos\left(7\left(\frac{\pi}{14}\right)\right) = \cos\left(\frac{\pi}{2}\right) = 0, \] \[ f\left(\frac{3\pi}{14}\right) = \cos\left(7\left(\frac{3\pi}{14}\right)\right) = \cos\left(\frac{3\pi}{2}\right) = 0. \] Since \(f\left(\frac{\pi}{14}\right) = f\left(\frac{3\pi}{14}\right)\), Rolle's Theorem applies! --- To find the point(s) \(c\) where \(f'(c) = 0\), we first compute the derivative: \[ f'(x) = -7\sin(7x). \] Setting this equal to zero gives: \[ -7\sin(7c) = 0 \Rightarrow \sin(7c) = 0. \] The solutions to \(\sin(7c) = 0\) are \(7c = n\pi\) for any integer \(n\). Therefore: \[ c = \frac{n\pi}{7}. \] To satisfy the interval \(\left(\frac{\pi}{14}, \frac{3\pi}{14}\right)\), you can find appropriate values of \(n\) and calculate the corresponding \(c\).