Solve by applying the zero product property. \[ 15 m(m+3)=14 m-10 \] If there is more than one solution, separate the answers with commas.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve the equation \( 15 m(m+3) = 14 m - 10 \), we first rearrange it into standard form: \[ 15 m(m+3) - 14 m + 10 = 0. \] Expanding and simplifying, we get: \[ 15m^2 + 45m - 14m + 10 = 0, \] \[ 15m^2 + 31m + 10 = 0. \] Now, we can apply the quadratic formula \( m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 15, b = 31, c = 10 \). Calculating the discriminant: \[ b^2 - 4ac = 31^2 - 4 \cdot 15 \cdot 10 = 961 - 600 = 361. \] Now, substituting into the quadratic formula: \[ m = \frac{-31 \pm \sqrt{361}}{30} = \frac{-31 \pm 19}{30}. \] This gives us two potential solutions: 1. \( m = \frac{-31 + 19}{30} = \frac{-12}{30} = -\frac{2}{5} \), 2. \( m = \frac{-31 - 19}{30} = \frac{-50}{30} = -\frac{5}{3} \). Thus, the solutions to the equation are: \(-\frac{2}{5}, -\frac{5}{3}\).