Pregunta
upstudy study bank question image url

Writing an Equation with No, One, or Infinitely Many Solutions Write a number in each box so that the equation has the Indicated number of solutions. (1) One solution \[ 2 x-1=\square x-1 \] (3) Infinitely many solutions \[ \frac{2}{5} x+3=\frac{2}{5} x+3 \] No solution \[ \frac{1}{3} x+2=\frac{\square}{\square} x-3 \] (4) One solution \[ 2 \sqrt{\square}-2)=6 x+5 \] (6) No solution (5) One solution \( \square \) \( x+4= \) \( \square \) \[ ] x-8 \] \[ \frac{2}{3} x+\square=\frac{\square}{\square} x+7 \]

Ask by Barrett Sanders. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the completed equations with the blanks filled in to achieve the specified number of solutions: 1. **One Solution** \[ 2x - 1 = 3x - 1 \] - **Solution:** \(x = 0\) 2. **No Solution** \[ \frac{1}{3}x + 2 = \frac{1}{3}x - 3 \] - **Result:** No solution 3. **Infinitely Many Solutions** \[ \frac{2}{5}x + 3 = \frac{2}{5}x + 3 \] - **Result:** Infinitely many solutions 4. **One Solution** \[ 2 \sqrt{4} - 2 = 6x + 5 \] - **Solution:** \(x = -\frac{1}{2}\) 5. **One Solution** \[ 2x + 4 = 3(x - 8) \] - **Solution:** \(x = 28\) 6. **No Solution** \[ \frac{2}{3}x + 5 = \frac{2}{3}x + 7 \] - **Result:** No solution

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Extra Insights

To get an equation with one solution for \( 2x - 1 = \square x - 1 \), you can choose \(\square = 2\). This way both sides equal \(2x - 1\), meaning the equation has one unique solution when \(x\) is solved. For infinitely many solutions in \(\frac{2}{5}x + 3 = \frac{2}{5}x + 3\), the left side exactly matches the right side because they are identical expressions. This means any value for \(x\) will satisfy the equation, leading to endless solutions—voilà, it's a math party! To create an equation with no solution with \(\frac{1}{3}x + 2 = \frac{\square}{\square} x - 3\), you can fill in the boxes with contradictory terms. For instance, set \(\square = 0\) for the second box. This gives you \(\frac{1}{3}x + 2 = -3\), which is impossible because the left side will never equal a constant negative value from the right. To have another equation with one solution like \(2\sqrt{\square} - 2 = 6x + 5\), choose \(\square = 25\). This sets \(2 \times 5 - 2 = 6x + 5\) which simplifies to \(8 = 6x + 5\), ultimately leading to one clear solution when solved. For a no-solution scenario with your last equation, if you want \(\square x + 4 = \square\) to yield no solutions, you could set both squares to \(0\). This transforms the left side to \(4 = -8\), which is clearly a contradiction, confirming that no value for \(x\) can satisfy this equation!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad