Pregunta
upstudy study bank question image url

c) \( 2 a^{2}-24 a+70 \)

Ask by Whittaker Harris. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The expression \( 2a^{2} - 24a + 70 \) can be factored as \( 2(a - 5)(a - 7) \).

Solución

It looks like you have the quadratic expression: \[ 2a^{2} - 24a + 70 \] Let's factor this expression step by step. ### Step 1: Factor Out the Greatest Common Factor (GCF) First, identify and factor out the GCF from all the terms. Here, the GCF is **2**. \[ 2a^{2} - 24a + 70 = 2(a^{2} - 12a + 35) \] ### Step 2: Factor the Quadratic Inside the Parentheses Now, focus on factoring the quadratic expression inside the parentheses: \[ a^{2} - 12a + 35 \] We need to find two numbers that: - **Multiply to give +35** - **Add up to -12** The numbers **-5** and **-7** satisfy these conditions because: \[ (-5) \times (-7) = 35 \quad \text{and} \quad (-5) + (-7) = -12 \] ### Step 3: Write the Factored Form Using these numbers, the quadratic can be factored as: \[ a^{2} - 12a + 35 = (a - 5)(a - 7) \] ### Final Factored Expression Combine this with the GCF you factored out earlier: \[ 2(a^{2} - 12a + 35) = 2(a - 5)(a - 7) \] **So, the fully factored form of the original expression is:** \[ 2(a - 5)(a - 7) \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To factor the expression \( 2a^{2} - 24a + 70 \), we can first factor out the greatest common factor, which is 2. This simplifies our expression to \( 2(a^{2} - 12a + 35) \). Now, we look to factor the quadratic \( a^{2} - 12a + 35 \), which can be factored as \( (a - 5)(a - 7) \). So, the fully factored form of the original expression is \( 2(a - 5)(a - 7) \). Did you know that factoring quadratics is like solving a puzzle? It’s all about finding two numbers that multiply to the constant term while adding up to the linear coefficient. Mistakes often happen when we overlook the signs of the numbers or forget to double-check our multiplication. Always remember to use the FOIL method to verify your factors! If you're keen to dive deeper into quadratic equations and their applications, you might enjoy exploring algebra textbooks that provide a wealth of examples and practice problems. Alternatively, websites like Khan Academy offer interactive lessons and quizzes that can solidify your understanding while keeping the learning process light and enjoyable!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad