Pregunta
upstudy study bank question image url

Find the derivative of the function using the definition of derivative. \[ \begin{array}{l}f^{\prime}(t)=5.5 t^{2}+3 t \\ \text { State the domain of the function. (Enter your answer using interval notation.) } \\ \text { State the domain of its derivative. (Enter your answer using interval notation.) } \\ \text { Need Help? }\end{array} \text { Read lt Watchlt } \]

Ask by Vega Vargas. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The derivative of the function is \( f'(t) = 11t + 3 \). Both the original function and its derivative are defined for all real numbers, so their domains are \( (-\infty, \infty) \).

Solución

To find the derivative of the function \( f(t) = 5.5t^2 + 3t \) using the definition of the derivative, we will use the formula: \[ f'(t) = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h} \] Given: \[ f(t) = 5.5t^2 + 3t \] Let's calculate the derivative step by step. Evaluate the limit by following steps: - step0: Evaluate using transformations: \(\lim _{h\rightarrow 0}\left(\frac{\left(5.5\left(t+h\right)^{2}+3\left(t+h\right)\right)-\left(5.5t^{2}+3t\right)}{h}\right)\) - step1: Add the terms: \(\lim _{h\rightarrow 0}\left(\frac{\left(5.5t^{2}+11th+5.5h^{2}+3t+3h\right)-\left(5.5t^{2}+3t\right)}{h}\right)\) - step2: Remove the parentheses: \(\lim _{h\rightarrow 0}\left(\frac{5.5t^{2}+11th+5.5h^{2}+3t+3h-\left(5.5t^{2}+3t\right)}{h}\right)\) - step3: Subtract the terms: \(\lim _{h\rightarrow 0}\left(\frac{11th+5.5h^{2}+3h}{h}\right)\) - step4: Reduce the fraction: \(\lim _{h\rightarrow 0}\left(11t+5.5h+3\right)\) - step5: Rewrite the expression: \(\lim _{h\rightarrow 0}\left(11t\right)+\lim _{h\rightarrow 0}\left(5.5h\right)+\lim _{h\rightarrow 0}\left(3\right)\) - step6: Calculate: \(11t+0+3\) - step7: Calculate: \(11t+3\) The derivative of the function \( f(t) = 5.5t^2 + 3t \) using the definition of the derivative is \( f'(t) = 11t + 3 \). Now, let's determine the domain of the function and its derivative. The domain of the function \( f(t) = 5.5t^2 + 3t \) is all real numbers, which can be represented in interval notation as \( (-\infty, \infty) \). The domain of the derivative \( f'(t) = 11t + 3 \) is also all real numbers, which can be represented in interval notation as \( (-\infty, \infty) \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the derivative of the function \( f(t) = \frac{5.5 t^3}{3} + \frac{3 t^2}{2} \) using the definition of the derivative, we use the limit definition: \[ f'(t) = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h} \] Calculating this gives us: 1. **Finding \( f(t+h) \)**: \[ f(t+h) = \frac{5.5(t+h)^3}{3} + \frac{3(t+h)^2}{2} \] 2. **Expanding and simplifying \( f(t+h) - f(t) \)** leads to terms involving \( h \). 3. **Taking the limit as \( h \to 0 \)** gives us \( f'(t) = 5.5t^2 + 3t \). The domain of \( f(t) \) is \( (-\infty, \infty) \) because polynomial functions are defined for all real numbers. Similarly, since the derivative is also a polynomial function \( 5.5t^2 + 3t \), its domain is also \( (-\infty, \infty) \).

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad