Find the derivative of the function using the definition of derivative. \[ \begin{array}{l}f^{\prime}(t)=5.5 t^{2}+3 t \\ \text { State the domain of the function. (Enter your answer using interval notation.) } \\ \text { State the domain of its derivative. (Enter your answer using interval notation.) } \\ \text { Need Help? }\end{array} \text { Read lt Watchlt } \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the derivative of the function \( f(t) = \frac{5.5 t^3}{3} + \frac{3 t^2}{2} \) using the definition of the derivative, we use the limit definition: \[ f'(t) = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h} \] Calculating this gives us: 1. **Finding \( f(t+h) \)**: \[ f(t+h) = \frac{5.5(t+h)^3}{3} + \frac{3(t+h)^2}{2} \] 2. **Expanding and simplifying \( f(t+h) - f(t) \)** leads to terms involving \( h \). 3. **Taking the limit as \( h \to 0 \)** gives us \( f'(t) = 5.5t^2 + 3t \). The domain of \( f(t) \) is \( (-\infty, \infty) \) because polynomial functions are defined for all real numbers. Similarly, since the derivative is also a polynomial function \( 5.5t^2 + 3t \), its domain is also \( (-\infty, \infty) \).