Pregunta
upstudy study bank question image url

7. Given that \( y=(2 x-3)(x+5)^{5} \), find the \( x \)-coordinates of the points where the tangent is perpendicular to the \( y \)-axis.

Ask by Romero Murray. in Singapore
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The tangent is perpendicular to the y-axis at \( x = -5 \) and \( x = \frac{5}{12} \).

Solución

To find the \( x \)-coordinates where the tangent to the curve \( y = (2x - 3)(x + 5)^5 \) is perpendicular to the \( y \)-axis, we need to determine where the slope of the tangent line is zero. A tangent line perpendicular to the \( y \)-axis is horizontal, meaning its slope is zero. ### Step 1: Differentiate \( y \) with respect to \( x \) Using the product rule for differentiation: \[ y = (2x - 3)(x + 5)^5 \] \[ \frac{dy}{dx} = (2x - 3) \cdot 5(x + 5)^4 + 2 \cdot (x + 5)^5 \] \[ \frac{dy}{dx} = 5(2x - 3)(x + 5)^4 + 2(x + 5)^5 \] ### Step 2: Factor the derivative Factor out the common term \( (x + 5)^4 \): \[ \frac{dy}{dx} = (x + 5)^4 [5(2x - 3) + 2(x + 5)] \] \[ \frac{dy}{dx} = (x + 5)^4 [10x - 15 + 2x + 10] \] \[ \frac{dy}{dx} = (x + 5)^4 (12x - 5) \] ### Step 3: Set the derivative equal to zero For the tangent to be horizontal: \[ (x + 5)^4 (12x - 5) = 0 \] This gives two solutions: 1. \( x + 5 = 0 \) \(\Rightarrow\) \( x = -5 \) 2. \( 12x - 5 = 0 \) \(\Rightarrow\) \( x = \frac{5}{12} \) ### Conclusion The \( x \)-coordinates where the tangent is perpendicular to the \( y \)-axis are: \[ x = -5 \quad \text{and} \quad x = \frac{5}{12} \] **Answer:** All real solutions are x = –5 and x = 5⁄12. The tangent is perpendicular to the y-axis at these x-values.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the \( x \)-coordinates of the points where the tangent is perpendicular to the \( y \)-axis, we first need to understand what this means in terms of the slope of the tangent line. A tangent that is perpendicular to the \( y \)-axis is horizontal, meaning its slope \( \frac{dy}{dx} \) must be zero. Start by differentiating \( y \) using the product and chain rules: 1. Let \( u = 2x - 3 \) and \( v = (x + 5)^5 \). 2. Use the product rule: \( \frac{dy}{dx} = u'v + uv' \). Calculate \( u' = 2 \), and \( v' = 5(x + 5)^4 \). Thus, we have: \[ \frac{dy}{dx} = (2)(x + 5)^5 + (2x - 3)(5(x + 5)^4) \] Now, set \( \frac{dy}{dx} = 0 \): \[ (2)(x + 5)^5 + (2x - 3)(5(x + 5)^4) = 0 \] Factor out \( (x + 5)^4 \): \[ (x + 5)^4 \left( 2(x + 5) + 5(2x - 3) \right) = 0 \] This gives two cases: 1. \( (x + 5)^4 = 0 \) → \( x + 5 = 0 \) → \( x = -5 \). 2. The term in parentheses \( 2(x + 5) + 5(2x - 3) = 0 \). Solving \( 2(x + 5) + 10x - 15 = 0 \): \[ 12x - 5 = 0 \implies x = \frac{5}{12} \] So the \( x \)-coordinates where the tangent is perpendicular to the \( y \)-axis are \( x = -5 \) and \( x = \frac{5}{12} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad