Pregunta
upstudy study bank question image url

An object is acted upon by the forces \( F_{1}=\langle 12,5,3\rangle \) and \( F_{2}=\langle 0,4,8\rangle \). Find the force \( F_{3} \) that must act on the object so that the sum of the forces is zero. \( F_{3}=\langle\square, \square \)

Ask by Colon Vargas. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( F_{3} = \langle -12, -9, -11 \rangle \)

Solución

To find the force \( F_{3} \) that must act on the object so that the sum of the forces is zero, we need to set up an equation where the sum of the forces \( F_{1} \), \( F_{2} \), and \( F_{3} \) is equal to zero. Given: \( F_{1} = \langle 12, 5, 3 \rangle \) \( F_{2} = \langle 0, 4, 8 \rangle \) We want to find \( F_{3} = \langle x, y, z \rangle \) such that: \( F_{1} + F_{2} + F_{3} = 0 \) Let's set up the equation for each component: 1. For the x-component: \( 12 + 0 + x = 0 \) 2. For the y-component: \( 5 + 4 + y = 0 \) 3. For the z-component: \( 3 + 8 + z = 0 \) Now, we can solve these equations to find the values of \( x \), \( y \), and \( z \) for \( F_{3} \). Solve the equation by following steps: - step0: Solve for \(x\): \(12+0+x=0\) - step1: Remove 0: \(12+x=0\) - step2: Move the constant to the right side: \(x=0-12\) - step3: Remove 0: \(x=-12\) Solve the equation \( 5 + 4 + y = 0 \). Solve the equation by following steps: - step0: Solve for \(y\): \(5+4+y=0\) - step1: Add the numbers: \(9+y=0\) - step2: Move the constant to the right side: \(y=0-9\) - step3: Remove 0: \(y=-9\) Solve the equation \( 3 + 8 + z = 0 \). Solve the equation by following steps: - step0: Solve for \(z\): \(3+8+z=0\) - step1: Add the numbers: \(11+z=0\) - step2: Move the constant to the right side: \(z=0-11\) - step3: Remove 0: \(z=-11\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the force \( F_{3} \) that must act on the object so that the sum of the forces is zero, we start by calculating the resultant of the forces \( F_{1} \) and \( F_{2} \). The given forces are: \( F_{1} = \langle 12, 5, 3 \rangle \) \( F_{2} = \langle 0, 4, 8 \rangle \) We find \( F_{1} + F_{2} \): \[ F_{1} + F_{2} = \langle 12 + 0, 5 + 4, 3 + 8 \rangle = \langle 12, 9, 11 \rangle \] For the sum of all forces to equal zero, we need: \[ F_{1} + F_{2} + F_{3} = 0 \] This implies: \[ F_{3} = - (F_{1} + F_{2}) = - \langle 12, 9, 11 \rangle = \langle -12, -9, -11 \rangle \] So the required force \( F_{3} \) is: \[ F_{3} = \langle -12, -9, -11 \rangle \]

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad