\( \left[\sin ^{2} \theta\right. \) can be written a (a) \( \sin ^{2} 230^{\circ} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
Did you know that the sine function relates to the unit circle in trigonometry? The sine of an angle is the y-coordinate of the point where the terminal side of the angle intersects the unit circle. This means that \( \sin(230^\circ) \) can be computed easily from its reference angle, \( 50^\circ \), which helps simplify calculations! For \( \sin^2(230^\circ) \), you can use the sine function's periodic properties. Since \( 230^\circ \) lies in the third quadrant, where sine is negative, the value of \( \sin(230^\circ) \) is \( -\sin(50^\circ) \). Therefore, \( \sin^2(230^\circ) = \sin^2(50^\circ) \), making it a useful identity when simplifying expressions in trigonometry!