Responder
**a) \( y = 32,000 \times (0.75)^{t} \)**
- **Growth or Decay:** Decay
- **Initial Amount:** 32,000
- **Rate of Decay:** 25%
- **When \( t = 4 \):** 10,156.25
**b) \( y = 25 \times (1.05)^{t} \)**
- **Growth or Decay:** Growth
- **Initial Amount:** 25
- **Rate of Growth:** 5%
- **When \( t = 4 \):** 30.39
Solución
Sure, let's analyze each exponential function step by step.
---
### **a) \( y = 32,000 \times (0.75)^{t} \)**
1. **Growth or Decay?**
- **Decay**
- **Reason:** The base of the exponential function is **0.75**, which is less than **1**. When the base is between **0** and **1**, the function represents exponential decay.
2. **Initial Amount:**
- **\( 32,000 \)**
- **Explanation:** The initial amount is the value of \( y \) when \( t = 0 \):
\[
y(0) = 32,000 \times (0.75)^{0} = 32,000 \times 1 = 32,000
\]
3. **Rate of Growth (Decay):**
- **25% Decay Rate**
- **Calculation:**
\[
\text{Decay Rate} = 1 - 0.75 = 0.25 \text{ or } 25\%
\]
- **Explanation:** Since the base is **0.75**, the quantity decreases by **25%** each time period.
4. **Evaluate for \( t = 4 \):**
- **Calculation:**
\[
y(4) = 32,000 \times (0.75)^{4} = 32,000 \times 0.31640625 = 10,156.25
\]
- **Result:**
\[
y(4) = 10,156.25
\]
---
### **b) \( y = 25 \times (1.05)^{t} \)**
1. **Growth or Decay?**
- **Growth**
- **Reason:** The base of the exponential function is **1.05**, which is greater than **1**. When the base is greater than **1**, the function represents exponential growth.
2. **Initial Amount:**
- **\( 25 \)**
- **Explanation:** The initial amount is the value of \( y \) when \( t = 0 \):
\[
y(0) = 25 \times (1.05)^{0} = 25 \times 1 = 25
\]
3. **Rate of Growth:**
- **5% Growth Rate**
- **Explanation:** The base is **1.05**, indicating a **5%** increase each time period.
4. **Evaluate for \( t = 4 \):**
- **Calculation:**
\[
y(4) = 25 \times (1.05)^{4} = 25 \times 1.21550625 = 30.38765625
\]
- **Result:**
\[
y(4) \approx 30.39
\]
*(Rounded to two decimal places)*
---
### **Summary Table**
| **Function** | **a) \( y = 32,000 \times (0.75)^t \)** | **b) \( y = 25 \times (1.05)^t \)** |
|------------------------|-------------------------------------------|---------------------------------------|
| **Growth or Decay** | Decay | Growth |
| **Initial Amount** | 32,000 | 25 |
| **Rate of Growth** | 25% Decay Rate | 5% Growth Rate |
| **\( y(4) \)** | 10,156.25 | 30.39 |
---
**Note:**
- When dealing with exponential functions:
- **Base \( > 1 \):** Exponential Growth
- **Base \( < 1 \):** Exponential Decay
- The **initial amount** is always the coefficient of the exponential term when \( t = 0 \).
- The **rate of growth or decay** is determined by how much the base deviates from **1**:
- For growth: \( \text{Rate} = (\text{Base} - 1) \times 100\% \)
- For decay: \( \text{Decay Rate} = (1 - \text{Base}) \times 100\% \)
- To **evaluate** the function at a specific time \( t \), substitute the value of \( t \) into the function and compute the result.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución