Pregunta
upstudy study bank question image url

6. Given the following exponential functions, identify if it is an exponential growth or decay, identify the initial amount, and the rate of growth (as a percent) of the exponential function. Lastly, evaluate the function when \( t=4 \) \( \begin{array}{ll}\text { a) } y=32,000(0.75)^{t} & \text { b) } y=25(1.05)^{t} \\ \text { growth or decay? } & \text { growth or decay? } \\ \text { initial amount: } & \text { initial amount: } \\ \text { rate of growth: } & \text { rate of growth: } \\ \text { Evaluate for } t=4: & \text { Evaluate for }=4:\end{array} \)

Ask by Hamilton Henry. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**a) \( y = 32,000 \times (0.75)^{t} \)** - **Growth or Decay:** Decay - **Initial Amount:** 32,000 - **Rate of Decay:** 25% - **When \( t = 4 \):** 10,156.25 **b) \( y = 25 \times (1.05)^{t} \)** - **Growth or Decay:** Growth - **Initial Amount:** 25 - **Rate of Growth:** 5% - **When \( t = 4 \):** 30.39

Solución

Sure, let's analyze each exponential function step by step. --- ### **a) \( y = 32,000 \times (0.75)^{t} \)** 1. **Growth or Decay?** - **Decay** - **Reason:** The base of the exponential function is **0.75**, which is less than **1**. When the base is between **0** and **1**, the function represents exponential decay. 2. **Initial Amount:** - **\( 32,000 \)** - **Explanation:** The initial amount is the value of \( y \) when \( t = 0 \): \[ y(0) = 32,000 \times (0.75)^{0} = 32,000 \times 1 = 32,000 \] 3. **Rate of Growth (Decay):** - **25% Decay Rate** - **Calculation:** \[ \text{Decay Rate} = 1 - 0.75 = 0.25 \text{ or } 25\% \] - **Explanation:** Since the base is **0.75**, the quantity decreases by **25%** each time period. 4. **Evaluate for \( t = 4 \):** - **Calculation:** \[ y(4) = 32,000 \times (0.75)^{4} = 32,000 \times 0.31640625 = 10,156.25 \] - **Result:** \[ y(4) = 10,156.25 \] --- ### **b) \( y = 25 \times (1.05)^{t} \)** 1. **Growth or Decay?** - **Growth** - **Reason:** The base of the exponential function is **1.05**, which is greater than **1**. When the base is greater than **1**, the function represents exponential growth. 2. **Initial Amount:** - **\( 25 \)** - **Explanation:** The initial amount is the value of \( y \) when \( t = 0 \): \[ y(0) = 25 \times (1.05)^{0} = 25 \times 1 = 25 \] 3. **Rate of Growth:** - **5% Growth Rate** - **Explanation:** The base is **1.05**, indicating a **5%** increase each time period. 4. **Evaluate for \( t = 4 \):** - **Calculation:** \[ y(4) = 25 \times (1.05)^{4} = 25 \times 1.21550625 = 30.38765625 \] - **Result:** \[ y(4) \approx 30.39 \] *(Rounded to two decimal places)* --- ### **Summary Table** | **Function** | **a) \( y = 32,000 \times (0.75)^t \)** | **b) \( y = 25 \times (1.05)^t \)** | |------------------------|-------------------------------------------|---------------------------------------| | **Growth or Decay** | Decay | Growth | | **Initial Amount** | 32,000 | 25 | | **Rate of Growth** | 25% Decay Rate | 5% Growth Rate | | **\( y(4) \)** | 10,156.25 | 30.39 | --- **Note:** - When dealing with exponential functions: - **Base \( > 1 \):** Exponential Growth - **Base \( < 1 \):** Exponential Decay - The **initial amount** is always the coefficient of the exponential term when \( t = 0 \). - The **rate of growth or decay** is determined by how much the base deviates from **1**: - For growth: \( \text{Rate} = (\text{Base} - 1) \times 100\% \) - For decay: \( \text{Decay Rate} = (1 - \text{Base}) \times 100\% \) - To **evaluate** the function at a specific time \( t \), substitute the value of \( t \) into the function and compute the result.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

For the function \( y=32,000(0.75)^{t} \), we have exponential decay since the base \( 0.75 \) is less than 1. The initial amount is \( 32,000 \) and the rate of decay is \( 25\% \) (calculated as \( 1 - 0.75 \) multiplied by 100). Evaluating for \( t=4 \) gives us \( y = 32,000(0.75)^{4} \approx 12,656.25 \). For the function \( y=25(1.05)^{t} \), this is exponential growth due to the base \( 1.05 \) being greater than 1. The initial amount is \( 25 \) and the rate of growth is \( 5\% \). Evaluating for \( t=4 \) gives \( y = 25(1.05)^{4} \approx 30.66 \).

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad