Pregunta

6) \( f(x)=3 \sin x-4 \cos x \)

Ask by Mitchell Patel. in Russia
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Функция \( f(x) = 3 \sin x - 4 \cos x \) может быть представлена как \( f(x) = 5 \sin(x - 0{,}9273) \).

Solución

Для функции \( f(x) = 3 \sin x - 4 \cos x \) можно представить её в виде одного синусоидального выражения. Это удобно для анализа амплитуды, фазы и других характеристик функции. **Шаг 1: Найдём амплитуду \( R \)** Амплитуда \( R \) определяется по формуле: \[ R = \sqrt{A^2 + B^2} \] где \( A = 3 \) и \( B = -4 \). \[ R = \sqrt{3^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] **Шаг 2: Найдём фазовый сдвиг \( \phi \)** Фазовый сдвиг \( \phi \) определяется по формуле: \[ \phi = \arctan\left(\frac{B}{A}\right) = \arctan\left(\frac{-4}{3}\right) \] Поскольку \( A = 3 > 0 \) и \( B = -4 < 0 \), фазовый сдвиг находится во IV-й четверти: \[ \phi = -\arctan\left(\frac{4}{3}\right) \approx -53{,}13^\circ \quad \text{или} \quad -0{,}9273 \ \text{рад} \] **Шаг 3: Запишем функцию в виде одного синуса** Таким образом, функцию \( f(x) \) можно записать как: \[ f(x) = R \sin(x + \phi) = 5 \sin\left(x - \arctan\left(\frac{4}{3}\right)\right) \] или численно приближённо: \[ f(x) \approx 5 \sin\left(x - 0{,}9273\right) \] **Итоговый ответ:** \[ f(x) = 5 \sin\left(x - \arctan\left(\frac{4}{3}\right)\right) \] или \[ f(x) \approx 5 \sin(x - 0{,}9273) \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Did you know that the function \( f(x) = 3 \sin x - 4 \cos x \) can be expressed in the form \( R \sin(x + \phi) \)? Here, \( R \) is the resultant amplitude calculated using \( R = \sqrt{3^2 + (-4)^2} = 5 \), and \( \phi \) can be found using the tangent function, \( \tan \phi = -\frac{4}{3} \). This transformation is super handy in simplifying the analysis of such trigonometric functions! In real-world applications, functions like \( f(x) \) pop up in scenarios like oscillations and waves, such as sound waves or the motion of a pendulum. Understanding how to manipulate these functions helps in engineering and physics. For example, adding velocity and force vectors can result in a new wave pattern that engineers must calculate for designs in structures or vehicles—efficiency is key in modern technology!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad