Pregunta
upstudy study bank question image url

0/6 Points] DETAILS MY NOTES. WANEFMAC8 3.2.045. PREVIOUS ANSWERS ASK YOUR TEACHER PRACTICE ANOT Inflation has been running \( 4 \% \) per year. A car now costs \( \$ 30,000 \). How much (in dollars) would it have cost 2 years ago? (Round your answer to the nearest cent.) \( \$ 27,732.00 \mathrm{x} \) Need Help? Readil Whtch

Ask by Graham Osborne. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The car would have cost approximately $27,736.69 two years ago.

Solución

To find the cost of the car 2 years ago, we need to calculate the cost of the car at the time of inflation. Given: - Inflation rate = 4% per year - Current cost of the car = $30,000 - Time period = 2 years Let's calculate the cost of the car 2 years ago using the formula for inflation: \[ \text{Cost 2 years ago} = \frac{\text{Current cost}}{(1 + \text{Inflation rate})^{\text{Time period}}} \] Substitute the given values into the formula: \[ \text{Cost 2 years ago} = \frac{30000}{(1 + 0.04)^2} \] Now, let's calculate the cost of the car 2 years ago. Calculate the value by following steps: - step0: Calculate: \(\frac{30000}{\left(1+0.04\right)^{2}}\) - step1: Add the numbers: \(\frac{30000}{1.04^{2}}\) - step2: Convert the expressions: \(\frac{30000}{\left(\frac{26}{25}\right)^{2}}\) - step3: Simplify the expression: \(\frac{30000}{\frac{26^{2}}{25^{2}}}\) - step4: Rewrite the expression: \(\frac{18750000}{26^{2}}\) - step5: Reduce the fraction: \(\frac{4687500}{169}\) The cost of the car 2 years ago would have been approximately $27,736.69. Therefore, the answer is $27,736.69.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find out how much the car cost two years ago, you can use the formula for adjusting for inflation: \( \text{Cost}_{\text{past}} = \frac{\text{Cost}_{\text{present}}}{(1 + \text{inflation rate})^{n}} \). Plugging in the values, we get \( \text{Cost}_{\text{past}} = \frac{30000}{(1 + 0.04)^{2}} \), which results in an approximate cost of \( \$27,732.00 \). Inflation impacts various aspects of our everyday lives, including purchasing power and savings. With a 4% inflation rate, a dollar will buy you less in the future. Keeping an eye on historical inflation rates can be crucial for making informed financial decisions, whether you're saving for retirement, planning a big purchase, or just trying to budget effectively!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad