Pregunta
upstudy study bank question image url

Use the given conditions to write an equation for the line in point-slope form and general form Passing through \( (-4,5) \) and parallel to the line whose equation is \( 2 x-9 y-4=0 \) The equation of the line in point-slope form is (Type an equation. Use integers or fractions for any numbers in the equation.) The equation of the line in general form is \( \square=0 \). (Type an expression using \( x \) and \( y \) as the variables. Simplify your answer. Use integers or fractions for any numbers in the expression.)

Ask by Moran Garza. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the line in point-slope form is \( y - 5 = \frac{2}{9}(x + 4) \), and in general form, it is \( 2x - 9y + 53 = 0 \).

Solución

To find the equation of the line that passes through the point \((-4, 5)\) and is parallel to the line \(2x - 9y - 4 = 0\), follow these steps: 1. **Determine the Slope of the Given Line:** First, rewrite the given line in slope-intercept form (\(y = mx + b\)) to find its slope: \[ 2x - 9y - 4 = 0 \\ -9y = -2x + 4 \\ y = \frac{2}{9}x - \frac{4}{9} \] The slope (\(m\)) of the given line is \(\frac{2}{9}\). 2. **Use the Point-Slope Form:** Since the desired line is parallel to the given line, it has the same slope. Using the point-slope form \(y - y_1 = m(x - x_1)\) with point \((-4, 5)\) and slope \(\frac{2}{9}\): \[ y - 5 = \frac{2}{9}(x - (-4)) \\ y - 5 = \frac{2}{9}(x + 4) \] **Point-Slope Form:** \[ y - 5 = \frac{2}{9}(x + 4) \] 3. **Convert to General Form:** To convert the equation to general form \(Ax + By + C = 0\), follow these steps: \[ y - 5 = \frac{2}{9}(x + 4) \\ 9(y - 5) = 2(x + 4) \quad \text{(Multiply both sides by 9)} \\ 9y - 45 = 2x + 8 \\ 9y - 2x - 53 = 0 \\ \] Typically, the \(x\) term is written first and the coefficients are positive: \[ 2x - 9y + 53 = 0 \] **General Form:** \[ 2x - 9y + 53 = 0 \] **Final Answers:** - **Point-Slope Form:** \( y - 5 = \frac{2}{9}(x + 4) \) - **General Form:** \( 2x - 9y + 53 = 0 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To derive the required equations, let's begin by finding the slope of the given line \( 2x - 9y - 4 = 0 \). First, we can rewrite this in slope-intercept form (y = mx + b): 1. Rearranging the equation: \[ 9y = 2x - 4 \] \[ y = \frac{2}{9}x - \frac{4}{9} \] From this, we see that the slope \( m \) is \( \frac{2}{9} \). Since we need a line parallel to this one, it will have the same slope. Given the point \( (-4, 5) \), we can use the point-slope formula: The equation of the line in point-slope form is: \[ y - 5 = \frac{2}{9}(x + 4) \] Now, let's convert this to general form. Start with the point-slope form: \[ y - 5 = \frac{2}{9}(x + 4) \] Multiply through by 9 to eliminate the fraction: \[ 9(y - 5) = 2(x + 4) \] \[ 9y - 45 = 2x + 8 \] Rearranging gives us: \[ 2x - 9y + 53 = 0 \] Thus, the equation of the line in general form is: \[ 2x - 9y + 53 = 0 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad