Pregunta
upstudy study bank question image url

4. A pillar in the shape of a cylinder has radius 21 cm and height 3 m . Find the curved surtace area and the volume of the pillar. 5. The volume of a 1 metre iron rod is \( 1386 \mathrm{cu} . \mathrm{cm} \). Find its diameter. 6. A rectangular piece of paper, 44 cm long and 16 cm broad, is rolled along its length to form a cylinder. What is the radius of the cylinder? What is its volume? 7. A tank is in the form of a right circular cylinder. Its height is 48 m and the base area is 616 sq . m . Find the lateral surface area and volume of the cylinder.

Ask by Boyd Harper. in India
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 4:** - **Curved Surface Area:** Approximately 39,583.2 cm² or \(12,600\pi\) cm² - **Volume:** Approximately 415,480 cm³ or \(132,300\pi\) cm³ **Problem 5:** - **Diameter of the Iron Rod:** 4.2 cm **Problem 6:** - **Radius of the Cylinder:** 7 cm - **Volume of the Cylinder:** Approximately 2,462.4 cm³ **Problem 7:** - **Lateral Surface Area:** \(1,344\pi\) m² or approximately 4,224 m² - **Volume of the Cylinder:** 29,568 m³

Solución

Certainly! Let's tackle each of the problems one by one. --- ## **Problem 4** **A pillar in the shape of a cylinder has a radius of 21 cm and a height of 3 m. Find the curved surface area and the volume of the pillar.** **Given:** - Radius, \( r = 21 \) cm - Height, \( h = 3 \) m \( = 300 \) cm (since \(1 \, \text{m} = 100 \, \text{cm}\)) ### **a. Curved Surface Area (CSA)** The formula for the curved surface area of a cylinder is: \[ \text{CSA} = 2\pi r h \] **Calculations:** \[ \text{CSA} = 2 \times \pi \times 21 \, \text{cm} \times 300 \, \text{cm} \] \[ \text{CSA} = 2 \times 3.1416 \times 21 \times 300 \] \[ \text{CSA} \approx 2 \times 3.1416 \times 21 \times 300 \approx 39,\!583.2 \, \text{cm}^2 \] **Alternatively, expressing in terms of \( \pi \):** \[ \text{CSA} = 2 \times \pi \times 21 \times 300 = 12,\!600\pi \, \text{cm}^2 \] ### **b. Volume of the Cylinder** The formula for the volume of a cylinder is: \[ \text{Volume} = \pi r^2 h \] **Calculations:** \[ \text{Volume} = \pi \times (21)^2 \times 300 \] \[ \text{Volume} = \pi \times 441 \times 300 \] \[ \text{Volume} = 132,\!300\pi \, \text{cm}^3 \approx 415,\!480 \, \text{cm}^3 \] --- ## **Problem 5** **The volume of a 1-meter iron rod is \( 1386 \, \text{cm}^3 \). Find its diameter.** **Given:** - Volume, \( V = 1386 \, \text{cm}^3 \) - Length (height), \( h = 1 \) m \( = 100 \) cm Assuming the rod is cylindrical: \[ V = \pi r^2 h \] **Solving for Radius (\( r \)):** \[ 1386 = \pi r^2 \times 100 \] \[ r^2 = \frac{1386}{100\pi} = \frac{13.86}{\pi} \approx \frac{13.86}{3.1416} \approx 4.416 \, \text{cm}^2 \] \[ r \approx \sqrt{4.416} \approx 2.1 \, \text{cm} \] **Diameter (\( d \)) is twice the radius:** \[ d = 2r = 2 \times 2.1 \, \text{cm} = 4.2 \, \text{cm} \] **Answer:** The diameter of the iron rod is approximately **4.2 cm**. --- ## **Problem 6** **A rectangular piece of paper, 44 cm long and 16 cm broad, is rolled along its length to form a cylinder. What is the radius of the cylinder? What is its volume?** **Given:** - Length of paper, \( L = 44 \) cm (becomes the circumference of the cylinder) - Breadth of paper, \( B = 16 \) cm (becomes the height of the cylinder) ### **a. Radius of the Cylinder** The circumference (\( C \)) of the cylinder is equal to the length of the paper: \[ C = 2\pi r = 44 \, \text{cm} \] \[ r = \frac{44}{2\pi} = \frac{22}{\pi} \approx \frac{22}{3.1416} \approx 7 \, \text{cm} \] **Answer:** The radius of the cylinder is approximately **7 cm**. ### **b. Volume of the Cylinder** The formula for the volume of a cylinder is: \[ \text{Volume} = \pi r^2 h \] where \( r \) is the radius and \( h \) is the height. **Given:** - \( r \approx 7 \) cm - \( h = 16 \) cm **Calculations:** \[ \text{Volume} = \pi \times (7)^2 \times 16 = \pi \times 49 \times 16 = 784\pi \, \text{cm}^3 \approx 2,\!462.4 \, \text{cm}^3 \] **Answer:** The volume of the cylinder is approximately **2,\!462.4 cm³**. --- ## **Problem 7** **A tank is in the form of a right circular cylinder. Its height is 48 m and the base area is \( 616 \, \text{m}^2 \). Find the lateral surface area and volume of the cylinder.** **Given:** - Height, \( h = 48 \) m - Base area, \( A = 616 \, \text{m}^2 \) ### **a. Lateral Surface Area (LSA)** First, we need to find the radius of the base. \[ A = \pi r^2 = 616 \, \text{m}^2 \] \[ r^2 = \frac{616}{\pi} \approx \frac{616}{3.1416} \approx 196 \, \text{m}^2 \] \[ r = \sqrt{196} = 14 \, \text{m} \] Now, the lateral surface area: \[ \text{LSA} = 2\pi r h \] \[ \text{LSA} = 2 \times \pi \times 14 \times 48 = 2 \times 3.1416 \times 14 \times 48 \approx 4,\!224 \, \text{m}^2 \] \[ \text{Alternatively, expressing in terms of } \pi: \] \[ \text{LSA} = 2 \times \pi \times 14 \times 48 = 1,\!344\pi \, \text{m}^2 \approx 4,\!224 \, \text{m}^2 \] ### **b. Volume of the Cylinder** The formula for the volume is: \[ \text{Volume} = \text{Base Area} \times \text{Height} = A \times h \] \[ \text{Volume} = 616 \, \text{m}^2 \times 48 \, \text{m} = 29,\!568 \, \text{m}^3 \] **Answer:** - **Lateral Surface Area:** \( 1,\!344\pi \, \text{m}^2 \) or approximately **4,\!224 m²** - **Volume:** **29,\!568 m³** --- If you have any further questions or need additional explanations, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that the ancient Greeks first studied the properties of cylinders and their volumes? Archimedes, the great mathematician, made significant contributions to geometry and solid figures, laying down the foundation of what we now know about cylinders. His work highlights how cylinders can contain both solid and liquid materials, indicating their importance in various applications in engineering and architecture! Speaking of cylinders, any time you're tasked with finding the volume or surface area, remember to use consistent units—especially if you're combining measurements! For instance, if you’re working with centimeters, keep all calculations in centimeters to avoid a mix up with other metric options like meters. Always double-check your formulas: Volume for a cylinder is \( V = \pi r^2 h \), and for the curved surface area, it’s \( A = 2\pi rh \). Happy calculating!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad