Responder
**Problem 4:**
- **Curved Surface Area:** Approximately 39,583.2 cm² or \(12,600\pi\) cm²
- **Volume:** Approximately 415,480 cm³ or \(132,300\pi\) cm³
**Problem 5:**
- **Diameter of the Iron Rod:** 4.2 cm
**Problem 6:**
- **Radius of the Cylinder:** 7 cm
- **Volume of the Cylinder:** Approximately 2,462.4 cm³
**Problem 7:**
- **Lateral Surface Area:** \(1,344\pi\) m² or approximately 4,224 m²
- **Volume of the Cylinder:** 29,568 m³
Solución
Certainly! Let's tackle each of the problems one by one.
---
## **Problem 4**
**A pillar in the shape of a cylinder has a radius of 21 cm and a height of 3 m. Find the curved surface area and the volume of the pillar.**
**Given:**
- Radius, \( r = 21 \) cm
- Height, \( h = 3 \) m \( = 300 \) cm (since \(1 \, \text{m} = 100 \, \text{cm}\))
### **a. Curved Surface Area (CSA)**
The formula for the curved surface area of a cylinder is:
\[
\text{CSA} = 2\pi r h
\]
**Calculations:**
\[
\text{CSA} = 2 \times \pi \times 21 \, \text{cm} \times 300 \, \text{cm}
\]
\[
\text{CSA} = 2 \times 3.1416 \times 21 \times 300
\]
\[
\text{CSA} \approx 2 \times 3.1416 \times 21 \times 300 \approx 39,\!583.2 \, \text{cm}^2
\]
**Alternatively, expressing in terms of \( \pi \):**
\[
\text{CSA} = 2 \times \pi \times 21 \times 300 = 12,\!600\pi \, \text{cm}^2
\]
### **b. Volume of the Cylinder**
The formula for the volume of a cylinder is:
\[
\text{Volume} = \pi r^2 h
\]
**Calculations:**
\[
\text{Volume} = \pi \times (21)^2 \times 300
\]
\[
\text{Volume} = \pi \times 441 \times 300
\]
\[
\text{Volume} = 132,\!300\pi \, \text{cm}^3 \approx 415,\!480 \, \text{cm}^3
\]
---
## **Problem 5**
**The volume of a 1-meter iron rod is \( 1386 \, \text{cm}^3 \). Find its diameter.**
**Given:**
- Volume, \( V = 1386 \, \text{cm}^3 \)
- Length (height), \( h = 1 \) m \( = 100 \) cm
Assuming the rod is cylindrical:
\[
V = \pi r^2 h
\]
**Solving for Radius (\( r \)):**
\[
1386 = \pi r^2 \times 100
\]
\[
r^2 = \frac{1386}{100\pi} = \frac{13.86}{\pi} \approx \frac{13.86}{3.1416} \approx 4.416 \, \text{cm}^2
\]
\[
r \approx \sqrt{4.416} \approx 2.1 \, \text{cm}
\]
**Diameter (\( d \)) is twice the radius:**
\[
d = 2r = 2 \times 2.1 \, \text{cm} = 4.2 \, \text{cm}
\]
**Answer:** The diameter of the iron rod is approximately **4.2 cm**.
---
## **Problem 6**
**A rectangular piece of paper, 44 cm long and 16 cm broad, is rolled along its length to form a cylinder. What is the radius of the cylinder? What is its volume?**
**Given:**
- Length of paper, \( L = 44 \) cm (becomes the circumference of the cylinder)
- Breadth of paper, \( B = 16 \) cm (becomes the height of the cylinder)
### **a. Radius of the Cylinder**
The circumference (\( C \)) of the cylinder is equal to the length of the paper:
\[
C = 2\pi r = 44 \, \text{cm}
\]
\[
r = \frac{44}{2\pi} = \frac{22}{\pi} \approx \frac{22}{3.1416} \approx 7 \, \text{cm}
\]
**Answer:** The radius of the cylinder is approximately **7 cm**.
### **b. Volume of the Cylinder**
The formula for the volume of a cylinder is:
\[
\text{Volume} = \pi r^2 h
\]
where \( r \) is the radius and \( h \) is the height.
**Given:**
- \( r \approx 7 \) cm
- \( h = 16 \) cm
**Calculations:**
\[
\text{Volume} = \pi \times (7)^2 \times 16 = \pi \times 49 \times 16 = 784\pi \, \text{cm}^3 \approx 2,\!462.4 \, \text{cm}^3
\]
**Answer:** The volume of the cylinder is approximately **2,\!462.4 cm³**.
---
## **Problem 7**
**A tank is in the form of a right circular cylinder. Its height is 48 m and the base area is \( 616 \, \text{m}^2 \). Find the lateral surface area and volume of the cylinder.**
**Given:**
- Height, \( h = 48 \) m
- Base area, \( A = 616 \, \text{m}^2 \)
### **a. Lateral Surface Area (LSA)**
First, we need to find the radius of the base.
\[
A = \pi r^2 = 616 \, \text{m}^2
\]
\[
r^2 = \frac{616}{\pi} \approx \frac{616}{3.1416} \approx 196 \, \text{m}^2
\]
\[
r = \sqrt{196} = 14 \, \text{m}
\]
Now, the lateral surface area:
\[
\text{LSA} = 2\pi r h
\]
\[
\text{LSA} = 2 \times \pi \times 14 \times 48 = 2 \times 3.1416 \times 14 \times 48 \approx 4,\!224 \, \text{m}^2
\]
\[
\text{Alternatively, expressing in terms of } \pi:
\]
\[
\text{LSA} = 2 \times \pi \times 14 \times 48 = 1,\!344\pi \, \text{m}^2 \approx 4,\!224 \, \text{m}^2
\]
### **b. Volume of the Cylinder**
The formula for the volume is:
\[
\text{Volume} = \text{Base Area} \times \text{Height} = A \times h
\]
\[
\text{Volume} = 616 \, \text{m}^2 \times 48 \, \text{m} = 29,\!568 \, \text{m}^3
\]
**Answer:**
- **Lateral Surface Area:** \( 1,\!344\pi \, \text{m}^2 \) or approximately **4,\!224 m²**
- **Volume:** **29,\!568 m³**
---
If you have any further questions or need additional explanations, feel free to ask!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución